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Available online 4 March 2016 Thermal behaviour of a porous channel with thick, solidwalls featuring unevenwall thicknesses and asymmetric
external thermal boundary conditions is analysed theoretically. The system is under forced convection and the
fluid and solid phases in this configuration include internal heat sources with varying strengths. Two types of
asymmetric boundary conditions are considered. These include constant but different prescribed temperatures
on the upper and lower solid walls and a combination of constant heat flux and convective boundary conditions
on the two sides of the channel. The Darcy–Brinkmanmodel of momentum transport and the two-equation en-
ergymodel are utilised to develop analytical solutions for the temperature fields and Nusselt number. A compre-
hensive parametric study is, subsequently, conducted. The results clearly show the pronounced effect of the
internal heat sources upon the Nusselt number and temperature fields of the system. In particular, the existence
of these source terms intensifies the occurrence of a bifurcation phenomenon in the temperature fields. In keep-
ing with the recent literature, it is demonstrated that the inclusion of internal heat sources leads to deviations
from the local thermal equilibrium. Nonetheless, the results imply that the extent of these deviations depends
on the thermal boundary conditions and also the specific phase in which heat is generated or consumed.
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1. Introduction

The problem of convective heat transfer in porous media has re-
ceived increasing attention over the last few decades [1,2]. The growing
significance of this topic can be attributed to a few reasons. These in-
clude the direct applications of transport in porous media in many con-
ventional engineering fields such as thermal systems, chemical reactors
and oil and gas reservoirs [3,4]. The subject has further foundnew appli-
cations in emerging fields such as biotechnology and biomedical engi-
neering [5]. The sensitivity of these systems and the recent emphasis
on improving the energy efficiencies have greatly signified the need
for superior thermalmodels. Central to achieving this goal is the consid-
eration ofmore realistic situations and, therefore, releasing the simplify-
ing assumptions [6].

A survey of the literature reveals that a large fraction of the existing
theoretical analyses in thefield of forced convection in porousmedia in-
cludes some common simplifying assumptions [1–3]. Consideration of
local thermodynamic equilibrium, axisymmetric configurations and ig-
noring the internal heat sources are amongst these assumptions. Appli-
cation of non-equilibrium thermodynamics has manifested itself,

mostly, in the utilisation of the local thermal non-equilibrium (LTNE)
or two-energy equation method [7–9]. Over the last two decades,
LTNE has been applied to various flow conduits, which were fully
[10–12] or partially [13–16] filled by porousmaterials. This has resulted
in improved predictions of the temperature distribution of the individ-
ual phases in porous media. Nonetheless, the unresolved problem of
thermal boundary conditions on the porous-solid and porous-fluid in-
terfaces continues to challenge this approach [17,19,20]. Asymmetric
configurations have been considered in a number of works. These
often include asymmetric flow conduits partially filled by a porous in-
sert such that the symmetry-breaking element is the location of the po-
rous insert, see for example [21,22]. The asymmetric configurations
with thick solid walls have receivedmuch less attention. The latter con-
figuration is, generally, a lesser explored setting in the modelling of
thermal systems. Recently, Ibanez et al. [23] considered the problem
of heat and fluid flow in a clear micro-channel featuring thick walls.
These authors [23] assumed constant thermal conductivity for the
solid walls and developed analytical solutions for the momentum and
energy equations. Their results clearly demonstrated the significance
of thick walls in the thermal behaviour of the system [23]. The growing
importance of the thermal analysis of purely conductive or conductive-
convective components is also reflected by the recent research interests
in this subject [24–26].

The internal heat sources in porousmedia under local thermal equi-
librium (LTE) conditions have been included in some studies [27–29].
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These works mostly concentrated on heat generation by viscous dissi-
pation. An exception to this is thework of Chen et al. [27], which consid-
ered uniform internal heat generations under local thermal equilibrium.
Examples of LTNE analyses with internal heat sources aremuch less fre-
quent and mostly limited to the recent studies. In a theoretical work,
Yang and Vafai [30] investigated a fully filled porous channel under
LTNE condition, which also featured internal heat generations. They
considered two different porous-solid thermal interfacemodels and de-
veloped closed form analytical solutions for the temperature fields and
Nusselt number [30]. Yang and Vafai demonstrated that internal heat
generation could cause significant deviations from the local equilibrium
condition [30]. Most recently, this work was extended to the partially
filled porous channels by Karimi et al. [31] and Torabi et al. [32]. Uniform
exothermic and endothermic processes were assumed to generate or
consume thermal energy in the fluid and solid phases. In keeping with
the earlier work of Yang and Vafai [30], these authors [31,32] showed
the strong effects of internal heat sources on the thermal behaviour of
the system. They also demonstrated the possibility of occurring heat
flux and temperature bifurcations [31,32]. In particular, these studies
confirmed the necessity of taking the non-equilibrium approach in the
analysis of problems which involve internal heat sources [31,32].

In reality, there are many thermal problems in porous media which
are not under local thermodynamic equilibrium, include asymmetric
configurations and involve exothermic or endothermic processes.
Chemical and nuclear reactors are the typical examples of this class of
problems, while biological systems are another application field, in
which metabolism provides the internal source of heat [33]. Biological
systems are usually asymmetric and can be subject to different thermal
boundary conditions [34]. All these examples accommodate exothermic
or endothermic reactions in thefluid and solid phases of the porousme-
dium. As a result, they are likely to operate far from the local thermal
equilibrium condition [35]. Further, most reactors include high pres-
sures which necessitate using thick walls. In practice, the thickness of
the wall may vary at different points resulting in an asymmetric config-
uration. Furthermore, reactors may be subject to various types of waves
(e.g. infrared, beta and gamma waves) [36]. Absorption of these waves
forms a source of thermal energy in the walls of the system. Similarly,
in biological applications, the region of interest is normally surrounded
by other heat generating tissues. Asymmetric porous systemswith thick
walls have beenmost recently analysed by Torabi and Zhang [37]. These
authors considered magneto-hydrodynamic effects and solved the
governing equations analytically to find the velocity, temperature and
entropy generation rates [37]. However, their work did not include in-
ternal heat sources in the porous medium [37].

The preceding review of the literatures reveals that the thermal
analysis of porous media with asymmetric configuration and internal
heat sources sets a challenge that has not been previouslymet. In partic-
ular, the influences of internal heat sources upon the temperature and
heat transfer rates are currently completely unknown. The aim of this
work is to address this issue through a series of theoretical analyses.

2. Theoretical methods

2.1. Problem configuration and assumptions

Fig. 1 shows the schematic view of the problem under investigation.
The channel is fully filled by a porous material and includes thick walls
with constant, but distinctive, thermal conductivities aswell as constant
and uniform, but dissimilar, internal heat generations. The internal heat
generationwithin the solid walls could be, for example, the result of the
absorption of gamma rays in the solid walls [38,39]. Two sets of bound-
ary conditions are considered in this problem. In Case one (Fig. 1a), it is
assumed that the upper and lower surfaces are subject to constant but
different temperatures. Case two (Fig. 1b) includes a constant heat
flux on the lower wall and a convective boundary condition on the
upper wall.

Nomenclature

Bi Biot number defined in Eq. (11a-t)
Da Darcy number
h Convection heat transfer (Case two), W ⋅m−2 ⋅K−1

h3 Height of the channel, m
k1 Reference thermal conductivity for lower solidmaterial,

W ⋅m−1 ⋅K−1

k2 Reference thermal conductivity for upper solidmaterial,
W ⋅m−1 ⋅K−1

kef Effective thermal conductivity of the fluid phase of the
porous medium, W ⋅m−1 ⋅K−1

kes Effective thermal conductivity of the solid phase of the
porous medium, W ⋅m−1 ⋅K−1

ke1 Ratio of porous medium thermal conductivity to lower
solid material thermal conductivity

ke2 Ratio of porous medium thermal conductivity to upper
solid material thermal conductivity

Nc Dimensionless convection heat transfer (Case two)
Q1 Dimensionless volumetric internal heat generation rate

for the lower solid material
Q2 Dimensionless volumetric internal heat generation rate

for the upper solid material
QH Dimensionless heat flux boundary condition (Case two)
ws Dimensionless volumetric internal heat generation rate

for the solid phase of the porous medium
wf Dimensionless volumetric internal heat generation rate

for the fluid phase of the porous medium
ss Volumetric internal heat generation rate for the solid

phase of the porous medium
sf Volumetric internal heat generation rate for the fluid

phase of the porous medium
_q1 Volumetric internal heat generation rate for the lower

solid material, W ⋅m−3

_q2 Volumetric internal heat generation rate for the upper
solid material, W ⋅m−3

qH Heat flux boundary condition (Case two), W ⋅m−2

T Temperature, K
T1 Temperature of the lower solid material, K
T2 Temperature of the upper solid material, K
TC Outer temperature of the upper solid material, K
TH Inner temperature of the lower solid material, K
Tf Temperature of the fluid phase of the porousmedium, K
Ts Temperature of the solid phase of the porousmedium, K
Up Dimensionless velocity
up Velocity of the fluid in porous medium, m ⋅s−1

Y1 Dimensionless wall thickness defined in Eq. (11a-t)
Y2 Dimensionless wall thickness defined in Eq. (11a-t)

Greek symbols
κ Permeability, m2

μeff Dynamic viscosity of porous medium, Kg ⋅s−1 ⋅m−1

μf Dynamic viscosity of the base fluid, Kg ⋅s−1 ⋅m−1

θ Dimensionless temperature
θ1 Dimensionless temperature of the lower solid material
θ2 Dimensionless temperature of the upper solid material
θf Dimensionless temperature of the fluid phase of the po-

rous medium
θs Dimensionless temperature of the solid phase of the po-

rous medium
θH Dimensionless temperature at outer side of the lower

wall
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