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Available online 4 March 2016 Analyses of hyperbolic heat conduction in an 1-D planar, cylindrical, and spherical geometry are analyzed using
the lattice Boltzamnn method (LBM). Finite time lag between the imposition of temperature gradient and man-
ifestation of heat flow causes the governing energy equation to be hyperbolic one. Temporal temperature distri-
butions are analyzed for thermal perturbation of a boundary by suddenly raising its temperature and also by
imposing a constant heat flux to it. Wave-like temperature distributions in the medium are obtained when con-
stant temperature boundary condition is used. However, when constant heat flux boundary condition is used,
temperature distribution fluctuates before it becomes stable. To check the accuracy of the LBM results, the prob-
lems are also solved using the finite difference method (FDM). LBM and FDM results compare exceedingly well.
LBM has computational advantage over the FDM.

© 2016 Elsevier Ltd. All rights reserved.

Keywords:
Hyperbolic heat conduction
Lattice Boltzmann method
Constant heat flux
Constant temperature and flux boundary
conditions

1. Introduction

Nothing is known to be instantaneous, and without a cause. A time
lag Γ must exist between the cause and the effect(s). In heat transfer
by conduction, as long as temperature gradient ∇T (cause) exists, heat
transfer q (effect) manifests. However, according to Fourier's law of
heat conduction q=−k∇T,where k is the thermal conductivity, there
is no time lag between the cause and the effect, they manifest simulta-
neously, in other words, heat propagates with an infinite speed. This is
contrary to the observations which include but are not limited to
analyses of heat conduction transfer at very small spatial and temporal
dimensions with and without periodic boundary conditions [1,2], in a
material subjected to short-pulse laser [3,4], thin films/plates [5–7], ma-
terial with inhomogeneous structure [8,9], etc. Contrary to observations
[1–9], omission of time lag Γ term, in otherwords, infinite speed of prop-
agation of energy in conduction heat transfer, precludes wave-like
nature in theoretical analysis based on Fourier's law of heat conduction.

The aforesaid anomaly in prediction by Fourier's law of heat conduc-
tion and observed fact [1–9] has been resolved by incorporating a finite
time lag Γ in the manifestation of heat flux qas proposed by Cattaneo
[10] and Vernotee [11] some six decades back.

q r; t þ Γð Þ ¼ −k∇T r; tð Þ ð1Þ

Eq. (1) accounts for the finite propagation speed Cof energy transfer
by conduction, andwith this, the governing energy equationmathemat-
ically turns out to be hyperbolic one, and in literature, it is also known as
the hyperbolic heat conduction (HHC) equation. It is to be noted when
the relaxation time Γ ¼ α

C2 ¼ 0:0 or the speed of propagation C= ∞ ,
Eq. (1) turns out to be Fourier one, and the nature of the corresponding
governing energy equation is parabolic. Following Cattaneo [10] and
Vernotee [11], many heat transfer studies [1–15] covering a wide
range of problems have been reported. Researchers have used different
numerical methods to analyze problems.

Recently, there has been a surge in the application of the lattice
Boltzmannmethod (LBM) to awide range offluidflowandheat transfer
problems [12–19]. This surge is owing to its simplicity in formulation,
implementation of boundary conditions, and computational advantage
over other methods like the finite difference method (FDM), the finite
element method, and the finite volume method [13,14]. Some re-
searchers [15–17] have also used LBM in the analyses of HHCE in differ-
ent geometry. Most of such studies pertain to thermal perturbation
caused by raising temperature of one of the boundaries [17].

Response of a system depends on how one ormore of its boundaries
are thermally perturbed. Thermally, a boundary can be perturbed either
by changing (raising or lowering) its temperature or imposed heat flux.
How for the two types of boundary conditions, temporal temperature
distributions vary for HHC has not been reported. Thus, the present
work aims at the application of the LBM to analyze HHC in an 1-D
planar, cylindrical, and spherical geometry for both types of boundary
conditions. To check the accuracy of results and computational efficien-
cy of the LBM, the same problems are also solved using the FDM.
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2. Formulation

For the 1-D geometry (planar, cylindrical, or spherical), with r as co-
ordinate direction, after Taylor series expansion left hand side of Eq. (1)
and ignoring 2nd order and higher differential terms, we get

Γ
∂q
∂t

þ q ¼ −k
∂T
∂r

ð2Þ

with ρ as the density, cp as the specific heat, and index n=0, 1 and 2
standing for planar, cylindrical and spherical geometry, in the absence
of convection and radiation, in a generalized form, the governing energy
equation for the 1-D geometry can be written as

ρcp
∂T
∂t

¼ −∇ � q ¼ −
1
rn

∂ rnqð Þ
∂r

ð3Þ

FromEqs. (1) and (3), the governing energy equation in terms of de-
pendant variable Tbecomes

ρcp Γ
∂2T
∂t2

þ ∂T
∂t

 !
¼ k

rn
∂
∂r

rn
∂T
∂r

� �
ð4Þ

If the time lag Γ=0, Eq. (4) is the diffusion equation based on
Fourier's lawof heat conduction.With non-dimensional time ζ, distance
η, temperature Θ, and heat flux Ψ defined as

ζ ¼ C2ρcpt
2k

; η ¼ Cr
2α

; Θ ¼ TkC
αqref

; Ψ ¼ q
qref

ð5Þ

Eq. (6) becomes

∂2Θ
∂ζ2 þ 2

∂Θ
∂ζ

¼ 1
ηn

∂
∂η

ηn
∂Θ
∂η

� �
ð6Þ

In the LBM formulation, equation corresponding to Eq. (6) is written
as

f i ηþ eiΔζ; ζ þ Δζð Þ− f i η; ζð Þ ¼ −
Δζ
τ

f i η; ζð Þ− f i
0ð Þ η; ζð Þ

h i

−
Δζ
2

n ai η
!
:Ψ

� �
2ηi

þ 4biei:Ψ

2
4

3
5; i ¼ 1;…M

ð7Þ

where fi is the particle distribution function, f i
ð0Þ is the equilibrium parti-

cle distribution function, and for the D1Q2 lattice (Fig. 1), ei ¼ Δ η!
Δζ ðe1 ¼

Δη
Δζ ; e2 ¼ − Δη

ΔζÞ is the velocity with which fi propagates to its nearest
neighbor, τ is the relaxation time,Ψ is the heat flux, ai and bi are weights
specific to the lattices used. In the D1Q2 lattice, the corresponding
weights ai ,bi and the relaxation time τ are given as

a1 ¼ a2 ¼ 1
2
; b1 ¼ b2 ¼ 1

2
ð8Þ

τ ¼ Δζ
Δη

� �2

þ Δζ
2

ð9Þ

where Δζ is the time step.
Solution of Eq. (7) requires knowledge of equilibrium distribution

function f i
ð0Þand heat flux Ψ. These are obtained from the following:

f i
0ð Þ ¼ aiΘþ biei �Ψ ð10Þ

Ψ ¼
X
i

f iei ¼
X
i

f 0ð Þ
i ei ð11Þ

Finally, with equilibrium distribution function fi known from the so-
lution of Eqs. (10) and (11), temperature distribution Θ(η,ζ) is given by

Θ ¼
X
i

f i
0ð Þ ¼

X
i

f i ð12Þ

Eqs. (6) and (7) represent the governing equations of the sameprob-
lem, in two different approaches, i.e., themacroscopic (continuum) and
the mesoscopic (LBM) approaches, and they should provide the same
results. The mesoscopic approach leads to the macroscopic. This equiv-
alence is established through the Chapman–Enskog multi-scale expan-
sion of Eq. (7) as shown in the following.

If the LHS of Eq. (7) is expanded we get

f i ηþ eiΔζ; t þ Δζð Þ ¼ f i η; ζð Þ þ Δζ
∂ f i
∂ζ

þ Δζ
∂ ei f ið Þ
∂η

þ O Δζ2
� �

þ O Δη2
� �
ð13Þ

With ε as the expansion parameter, with respect to the equilibrium
particle distribution function fi

(0), fi can be written as

f i r; tð Þ ¼ f i ¼ f i
0ð Þ þ ε f i

1ð Þ þ O ε2
� �

; εj jbb1 ð14Þ

Substituting Eq. (14) in the RHS of Eq. (7), we get

∂ f i
0ð Þ

∂ζ
þ ε

∂ f i
1ð Þ

∂ζ
þ
∂ ei f i

0ð Þ� �
∂η

þ ε
∂ ei f i

1ð Þ� �
∂η

¼ −
1
τ
ε f i

1ð Þ−
Ψ
2

nai
2ηi

þ 4biei

� 	
þ O Δζð Þ þ O ε2

� �
ð15Þ

Nomenclature

A Area
cp Specific heat
C Speed of thermal wave
e!i Propagation velocity in the direction i in the lattice
fi Particle distribution function in the i direction
fi
(0) Equilibrium particle distribution function in the i

direction
k Thermal conductivity
n Index for geometry: 0—planar, 1—cylindrical, and

2—spherical

Greek Symbols
α Thermal diffusivity
Θ Non-dimensional temperature
ζ Scaled non-dimensional time
ξ Scaled non-dimensional time (=ζ−ζ0)
ρ Density
τ Relaxation time
Γ Time lag

Subscripts
ref Reference value
o Initial value

Superscripts
* Dimensional quantities
(n) Nth order term in the Chapman–Enskog expansion
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