ELSEVIER

Contents lists available at ScienceDirect

Journal of CO₂ Utilization

journal homepage: www.elsevier.com/locate/jcou

Review Article

CO₂ as a soft oxidant for oxidative dehydrogenation reaction: An eco benign process for industry

Deboshree Mukherjee^a, Sang-Eon Park^b, Benjaram M. Reddy^{a,*}

ARTICLE INFO

Article history: Received 23 May 2016 Received in revised form 22 July 2016 Accepted 16 August 2016 Available online xxx

Keyword:
Oxidative dehydrogenation
Carbon dioxide
Ethane
Ethylbenzene
Styrene
Propane
Butane

ABSTRACT

Utilization of CO_2 as soft oxidant is emerging as a potential technology for industrial production of alkenes. Traditional way of alkene production in mass scale involves direct dehydrogenation of alkanes, which is energetically expensive. Oxidative dehydrogenation in the presence of CO_2 is a greener alternate to the traditional normal dehydrogenation process. Hence, this area has drawn remarkable investment of research interest worldwide. From environmental point of view, utilization of CO_2 is accepted as a means to mitigate the ever increasing greenhouse gas effect. CO_2 utilization is also attractive for its abundant availability and cheaper cost. But utilization of CO_2 suffers from the limitation of its inherent inertness. Application of suitable catalyst can help to overcome the thermodynamic and kinetic barrier of CO_2 activation. Exploitation of the soft oxidant property of CO_2 with the help of suitable catalyst in commercial scale can give a boost to polymer and fuel economy. Hence, it is interesting to focus on the possibilities of CO_2 utilization in oxidative dehydrogenation process. The challenges met in this process and the invention of catalytic technologies to address those problems are summarized in this mini-review.

© 2016 Elsevier Ltd. All rights reserved.

Contents

1.	Introduction	301
	Participation of CO2 as soft oxidant in dehydrogenation reactions: advantages versus challenges	
3.	CO ₂ activation	
4.	Participation of catalyst in CO_2 activation: favourable factors	303
	4.1. Use of promoters	
	4.2. Surface acidity/basicity	303
5.	Influence of redox property and lattice oxygen of catalyst	
6.	Use of supports	305
7.	Oxidative dehydrogenation of ethylbenzene	306
8.	Oxidative dehydrogenation of ethane	307
9.	ODH of other light alkanes like propane & butane in presence of ${ m CO}_2$	308
10.	Scope in industry	
	Acknowledgments	310
	References	310

1. Introduction

Carbon dioxide (CO_2) has acquired the focus of global chemical research community due to its large scope of industrial utilization. The abundant availability, non-toxic nature, and mild oxidizing property have made CO_2 chemistry more interesting. At present,

E-mail addresses: bmreddy@iict.res.in, mreddyb@yahoo.com (B.M. Reddy).

a Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology Uppal Road, Hyderabad, 500 007, India

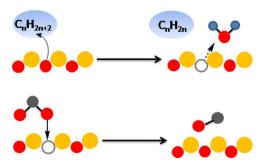
b Laboratory of Nano-Green Catalysis, Department of Chemistry, Inha University, Incheon 402-751, Republic of Korea, Republic of Korea

^{*} Corresponding author.

industrial use of carbon dioxide can be found in production of chemicals, refrigeration systems, inert agent for food packaging, beverages, welding systems, fire extinguishers, water treatment processes, fertilizers, and many other smaller-scale applications. Large quantities of carbon dioxide are also used for enhanced oil recovery, particularly in the United States. Carbon dioxide can also become the raw material for producing carbon-based fuels. Biomass conversion to fuels also falls into the category of generating fuels from CO₂.

While talking about CO₂ chemistry, however, one can't escape from mentioning its environmental contributions. Carbon dioxide (constitutes 0.04% of earth's atmosphere) is an integral part of the 'carbon cycle' in which carbon flows in the form of energy and nutrient throughout the ecosystem and is exchanged between ocean, rock, soil, and biosphere, which is essential to maintain life on earth. CO₂ is also important in maintaining Earth's temperature through its natural greenhouse effect. However, this environmental boon has been regarded as one of the key culprits causing global warming. Excessive rise of atmospheric CO₂ level in the industrial era has resulted in the phenomenon of global warming, which has become a serious concern worldwide. Along with checking the CO₂ emission level, utilization of CO₂ has also been globally envisioned by the scientific community as an obvious means to diminish atmospheric CO₂ level. Active research groups are exploring new or improved CO₂ utilization processes. Accordingly, extensive literature is also present which deal with CO₂ uses in the industry

Invention of novel pathways for utilization of CO2 is well appreciated area in industrial as well as academic research. Application of CO₂ as a feedstock for production of fuels, and other useful products like cement, polycarbonate plastics, etc has gained substantial research focus. Mineralization of CO2 and enhanced oil/gas recovery are some of the path breaking ways of controlling the ever rising CO₂ level. CO₂ has also found application in oxidation reactions as solvent in supercritical state and expanded solvent system. However, use of CO₂ as a soft oxidant is another small but important research area. The use of CO₂ as a mild oxidant, an O-transfer agent, or an H-acceptor offers some interesting challenge to heterogeneous catalysis because of high thermodynamic stability and kinetically inertness of the CO₂ molecule. Early studies on the use of carbon dioxide as a mild oxidant have been reported for syngas production from methanol [3-5]. Later on, CO₂ oxidation studies have been reported for ethylbenzene to styrene conversion by Sugino et al. [6] and have been investigated further by other research groups at length [7-21]. Oxidative dehydrogenation of the light alkanes has also been reported contemporarily [8]. Park et al. have deeply investigated different heterogeneous catalytic systems for utilization of CO2 as a soft-oxidant. Apart from soft oxidant, CO₂ has also found application as a co-oxidant [9]. CO₂ has also found application in the oxidation reactions as solvent in supercritical state and expanded solvent system. Park et al. have reviewed utilization of CO₂ as a soft oxidant and promoter in 2012 [21], providing an in depth analysis of the role of CO₂ in soft oxidation process, factors responsible for activation of CO2, and earlier relevant literature reports. Hence, this perspective will mainly emphasize on the recent literature reports. Firstly, a brief summary of CO₂ participation and activation will be reviewed followed by an in depth discussion of recent literature reports. Hopefully, this compendium will be helpful to further progress in this area in the right direction.


2. Participation of $\mbox{\rm CO}_2$ as soft oxidant in dehydrogenation reactions: advantages versus challenges

Against normal dehydrogenation reaction, oxidative pathway is favoured due to constant regeneration of the catalyst active sites by

the oxidants. During catalytic dehydrogenation reaction in the absence of an oxidant, the lattice oxygen of the catalyst participates in H_2 abstraction forming water. After the lattice oxygen of the catalyst surface gets exhausted, rate of formation of water decreases with a gradual increase in the formation of molecular H_2 , which in turn slows down the process [10]. Removal of H_2 can overcome the equilibrium limitation and enhance catalytic performance [11]. However, in the presence of CO_2 the dehydrogenation reaction pathway changes in oxidative manner, in which CO_2 constantly maintains the supply of lattice oxygen and suppress the formation of molecular H_2 . The presence of CO_2 induces reverse water–gas shift $(CO_2 + H_2 \rightarrow CO + H_2O)$, which in turn favours the ODH reaction [12]. A schematic diagram of the oxidative dehydrogenation pathway is presented in Fig. 1.

CO₂ has several advantages as soft oxidant over various oxidizing agents tested for oxidative dehydrogenation like dry air, O_2 , CO_2 , N_2O , and SO_2 [13]. Being milder than O_2 and H_2O , CO_2 avoids the burning of valuable hydrocarbons [14], and therefore can be efficiently utilized in a soft oxidation process [15]. It is less hazardous than N₂O and SO₂ [16]. Apart from that, loss of latent heat does not take place, because CO2 stays gaseous throughout the reaction [17]. Heat capacity of CO₂ is the highest among the typical gases [18,19]. CO₂ increases the selectivity by poisoning the nonselective site of the catalyst, which are responsible for formation of by-products [20]. Furthermore, CO₂ participates in the decoking process (C+CO₂ \rightarrow 2CO) that helps to sustain stable activity of the catalyst. Hence, the ODH reaction in the presence of CO₂ can generally be coined as a gas-mediated modification of the catalyst surface, which cause favourable influence on adsorption, diffusion. and redox properties of the catalyst to carry out the dehydrogenation of alkanes [21].

In spite of several advantages, utilization of CO2 in soft oxidation processes face difficulty due to inertness of CO2 molecule. The foremost challenging part of CO₂ utilization is the activation of CO₂ molecule. Gibbs energy of formation of CO₂ $(\Delta G^{\circ}_{298.15\text{K}} = -394.4 \text{ kJ mol}^{-1})$ is considerably high. Kinetic barrier also plays a key role for its inertness. Interaction of CO₂ molecule with a metal complex in homogeneous reaction or with a solid surface in heterogeneous reactions helps to overcome the kinetic barrier. In nature, CO₂ fixation occurs through photosynthesis. The surface of the enzyme ribulose 1,5-biphosphate carboxylase/ oxygenase gets involved in the process of CO2 activation. It is well-established that the active site of CO2 activation in photosynthesis is a Mg(II) ion embedded in a complex ligand field with oxygen atoms directly coordinated to the Mg centre. From the natural process of photosynthesis, it can be realised that sensible use of proper catalytic system can enhances the use of CO₂ as a useful reactant.

Fig. 1. Oxidative dehydrogenation pathway of alkanes to alkenes [- metal, - metal, - carbon, - hydrogen].

Download English Version:

https://daneshyari.com/en/article/6529168

Download Persian Version:

https://daneshyari.com/article/6529168

<u>Daneshyari.com</u>