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ARTICLE INFO ABSTRACT

A detailed study of the problem of the boundary-layer flow on a shrinking permeable surface near a forward
stagnation point with an outer flow u,, « x™, a tangential wall velocity u,, o« x™, and velocity slip on the
surface considered previously by Fauzi et al. [1] for m = 1 (stagnation point flow) is presented. Further
numerical results are obtained and the asymptotic behaviour of the flow under various conditions of the
governing parameters is described. Four cases of the problem are considered, namely an impermeable fixed
wall, an impermeable moving wall, a permeable fixed wall and a permeable moving wall. For the case of
an impermeable fixed wall, it is found that there is a critical value 3, of B3 = 2m/(m + 1) dependent on
the velocity slip parameter A, and that this critical value approaches a finite limit as A increases. For the
case of impermeable moving wall, the critical value is negative, decreasing as A is increased. Asymptotic
solutions for both strong suction and strong blowing are obtained for the permeable fixed wall. For the case
of permeable moving wall, the critical values A. of the parameter A, the ratio of the wall velocity to the outer
flow, found by Fauzi et al. [1] are completed and plotted against the governing suction parameter S. It is seen
that A becomes large as suction is increased.
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1. Introduction where B = 2m/(m + 1) and primes denote differentiation with

respect to y. In boundary conditions indicated in Eq. (2) S is a dimen-

In a recent paper Fauzi et al. [1] considered the steady boundary-
layer flow on a shrinking permeable surface with an outer flow u,,
Xx™ and a tangential wall velocity u,, « x™, though they were mostly
concerned with a forward stagnation-point flow, i.e. taking m = 1.
They also included the effect of velocity slip on the surface, i.e. tak-
ing the tangential wall velocity proportional to the wall shear, where
x measures distance along the surface. In essence they derived the
similarity system

[P+ +p(1-f*) =0, 1)
subject to

flO)=S, fO)=A+Af"(0), ff-1 as y— oo, (2)
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sionless transpiration velocity, with S > 0 for suction and S < 0 for
blowing, A is a dimensionless velocity slip parameter, with A > 0, and
A represents the velocity of the wall relative to that of the outer flow.

Perhaps the most significant feature of the results presented in [1]
was existence of a critical value A. of the wall velocity parameter A,
limiting solutions to A > A.. The values of A were seen to depend on
the other dimensionless parameters, namely A and S, and had A < 0.
Our aim here is to extend the results given in [1], in particular by
obtaining asymptotic forms for the solution to Eqs. (1) and (2) based
on one of the parameters being large. Finally we note that Fauzi et al.
[1] also considered the heat transfer in this situation through forced
convection though here we limit attention just to the equation for
the flow.

We start by considering the simplest form of the problem given
by Egs. (1) and (2), namely an impermeable fixed wall.

2. Impermeable, fixed walLA =S =0
Here we solve Eq. (1) subject to

fl0)=0, f(0)=Af"(0), f—1 as y— oc. (3)
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In Fig. 1 we plot f(0) and f"(0) against A for 3 = 1 (stagnation-
point flow). We see that the solution starts at A = 0 with f(0) = 0
and f”(0) = 1.232588 as given by the classical stagnation-point flow
problem [2]. As A increases f'(0) approaches an asymptotic value of
1, shown by a broken line, and that f”(0) tends to zero.

With A = 0 we obtain the classical Falkner-Skan problem which
has been shown [3] to have a critical value B.o, where B¢ =
—0.19884, with solutions possible only for 8 > 3., as can be seen in
Fig. 2 for A = 0. The saddle-node bifurcation at 8 = 3. gives rise to
two solution branches, the upper branch continues to large positive 3
while the lower branch terminates in a singularity as 8 — 0~ [4]. We
note, in passing, that 3. can be determined by solving Eq. (1) subject
to Eq. (2), with A = S = 0, and the extra condition that f'(0) = 0. In
Fig. 2 we plot f*(0) against 3 for representative values of A. We again
see the existence of a critical value 3. = B.(A), with |3.| increasing
as A is increased. All the curves pass through the point 8 = . with
f(0) = f'(0) = 0. As before, the upper branch continues to large 3
and the lower branch terminates as 3 — 0 with f'(0) — 0 with the
solution becoming singular in the manner described in [4].

We investigate these critical values in more detail in Fig. 3 where
we plot 3, against A. We see that the curve starts with 3.0 atA =0
and decreases as A is increased. Our numerical integrations suggest
that 3. approaches a finite limit of approximately —0.5 as A becomes
large.

2.1. Solution for A large

As A — oo, f — y which leads us to look for a solution for A large
by expanding

f=y+ATThm+---, (4)

where f; satisfies

T 4+yfi-28f =0, f1(0)=0, f{(0)=1, fj—>0asy— co.

(5)

For a general value of B Eq. (5) can be solved in terms of confluent
hypergeometric functions [5] as

N

(-2
C2p]
(6)

B-3)! 11\
{:_(\/Tn)e—yz/z U(2+ﬁ;2; 2). giving f1(0)=

on using the notation in [5]. Expression (6) holds provided that
B> —%, indicating the limiting value for 3. as A — oo seen in Fig. 3.
We next consider the effect of a moving wall.

3. Impermeable, moving wall, A = 0,S =0

For this case we solve Eq. (1) now subject to

f(0)=A+Af"(0), f->1lasy— co. (7)

In this case we find a behaviour similar to that seen in Fig. 2
in [1] where, in effect, f(0) is plotted against A, there for m = 1 and
A = 0.5. A critical value A is observed in these solutions with solu-
tions only for A > A.. The situation when A = 0 has been treated
previously, especially for the case when m = 0, see for example
[6, 7]. Here a critical value is again seen, A ~ —0.3541 form = 0
and A\, = —1.2466 for 3 = 1. We investigate this case by plotting A,
against A shown in Fig. 4a. This figure shows that A, is negative for

all A and decreases, apparently linearly, as A is increased becoming
unbounded as A — oc.

3.1. Solution for A large

The results shown in Fig. 4a suggest that we write A = UA,
where p is of O(1). The boundary condition on y = 0 then becomes
f'(0) + u = AT'f(0). So that, at leading order, we have to solve
Eq. (1) now subject to f'(0) = —pu. This problem leads to a critical
value p. of u, dependent on . For 3 = 0, e = —0.46960 and for
B =1, ur = —1.50724. To complete the picture in Fig. 4b we plot
the critical values A, obtained by solving Eq. (1) subject to f'(0) = A,
and L, obtained by solving Eq. (1) subject to f'(0) = —u, both with
f(0) = 0. The values of pi- are shown in Fig. 4b by a broken line. In the
former case we see that the A\, curve terminates at 3 = 39 ~ —1.325
with A¢ — 0, passes through the points 3 = —1,A = 1and 8 =
Beo,Ac = 0, with Ac > 01in By < 3 < Bcp. There also appears to be a
gap in the curve between 3 ~ 0.139 and 3 ~ 0.5 (we tried to fill this
gap by using a very small increment in 3 in the numerical integration
but this did not give any results in this gap) and the curve continues
to large positive 3. In the latter case i - —ocoas3 — —1,haspy. =0
at B3 = —0.5, i is negative throughout continuing, without any gaps,
to large B.

4. Permeable, fixed wall, \ = 0,S # 0

Here we solve Eq. (1) subject to the boundary conditions

fO)=S,  f(0)=Af"(0), f —1asy- oo. (8)

In Fig. 5 we plot f'(0) against S for 3 = 1 and a range of values
of A. We see that, for suction S> 0, the behaviour is different for
A = 0, where f(0) grows linearly for S large, whereas for A > 0, f*(0)
appears to be approaching a finite value as S increases. For blowing
S < 0,f"(0) appears to be decreasing to zero in each case.

4.1. Solution for S large, S> 0

The plots shown in Fig. 5 indicate that we need to consider the
cases A> 0 and A = 0 separately, in fact we can extend this latter
case to having A of 0(S™"), where we put A = aoS~" with ag of 0(1).

41.1. A= apS”!
For this case we put

f=S1+572F), {=Sy. (9)
Applying transformation (9) in Eqs. (1) and (2) leads to

F" + F'+S2(FF' +B-BF?*) =0,
(10)

F0)=0, F(0)=aoF'(0), F—1 as ¢ - oo,

primes now denoting differentiation with respect to . Eq. (10)
suggests looking for an expansion for S large in the form

F($:S)=Fo(§) + S F({) +--- . (11)
At leading order we find

Fo=¢- (1-e™). (12)

1+a
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