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a b s t r a c ta r t i c l e i n f o

Available online 30 December 2015 An inverse method is developed to simultaneously estimate unknown temperature-dependent thermal conduc-
tivity and specific heat of a brass rod with knowledge of temperatures taken on the specimen. An experimental
process with the brass rod is built for measuring temperatures at some locations to verify the thermal conductiv-
ity and specific heat. With known temperature data recorded from the experiment, inverse solutions were rap-
idly obtained through the Broyden–Fletcher–Goldfarb–Shanno (BFGS) combined simple step method. Results
show that the proposed method can estimate thermal properties with low iterations and in a significantly
short time compared to other methods. In addition, the estimated temperatures are in very good agreement
with the measurement temperature. From experimental verification, the estimated thermal properties are
quite close to values obtained by simple tests, with several cases of different heat generationmagnitudes. The ef-
fect of measurement errors and locations, as well as measured point numbers, on the accuracy of inverse solu-
tions was discussed. According to analysis results, the proposed method, an accurate and efficient method for
the prediction of unknown thermal conductivity and specific heat, can be applied to accurately estimate
thermophysical properties of various materials.
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1. Introduction

Each material has a characteristic rate at which heat will flow
through it. The faster the heat flows in a material, the more conductive
it is. Therefore, understanding the intrinsic properties will help us
choose the right materials to manage heat flow. Thermophysical prop-
erties, i.e. thermal conductivity and specific heat, not only decide ther-
mal heat transport in the materials but also significantly affect the
analysis of temperature distribution and heat flow rate when the mate-
rial is heated. Thus, thermal property measurements have become
important in the engineering and development of newmaterials. How-
ever, direct measurement of surface conditions are not feasible; thus,
many researchers have devoted their studies to the inverse problem
for prediction of thermal properties.

The determination of thermal properties, which are functions of
temperature, from measured temperatures in the material is one kind
of nonlinear inverse heat conduction problem [1]. To date various
methods and experiments have been developed to determine thermal
conductivity as well as heat capacity per unit volume. Several experi-
ments for the measurement of temperature and thermal conductivity,

including the hotwiremethod [2], laserflashmethod [3], hot ball meth-
od [4], and hot diskmethod [5], have been investigated. Recently, an ex-
perimental and numerical approach was taken to derive the thermal
conductivity in a spiral coil type groundheat exchanger [6] and the ther-
mal conductivity of bulk and dense oxynitride Lu4Si2O7N2 at various
temperatures [7]. Many authors have studied the inverse estimation of
thermal conductivity through the measurement of the temperature
profile [8–13]. An unknown thermal conductivity was assumed, and
the heat conduction problem was solved through iterations [8,11,13].
The first order accuracy of the finite differencemethod [14] and the sec-
ond order finite difference technique [12] were employed to determine
thermal conductivity. A simple transientmethod [15] and a simplemea-
surement [16] were applied to estimate thermal conductivity and spe-
cific heat. Afterwards, these properties were simultaneously predicted
by using the least-square method [17–19], semi-discretization method
[9], and the Taylor series approach [14]. J. Myllymaky and D. Baroudi
[20] used the finite element technique combined with the regularized
output least square method, and Yang [21] used the iterative method
for determining temperature-dependent thermal conductivity of a ma-
terial from boundary temperature measurements. From the tempera-
ture measurements inside the material, the temperature-dependent
thermal conductivity and heat capacity were also estimated by using a
hybrid numerical algorithm of the Laplace transform technique, the
control-volume method [22] and the conjugate gradient method [23,
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24]. D. Gossard et al. [25] studied an inverse method using a particle
swarm optimization algorithm in order to find the geometrical and
thermophysical properties of a three-dimensional conjugate heat trans-
fer model. They pointed out that the thermal conductivity and the volu-
metric specific heat of the solid material are the two parameters that
most impact thermal resistance. A hybrid method, which is a combina-
tion of the modified genetic algorithm and the Levenberg–Marquardt
method, was developed by Fung-Bao Liu [26] to simultaneously desig-
nate fluid thermal conductivity and heat capacity for a transient inverse
heat transfer problem. Themodified, one-dimensional correctionmeth-
od, along with the finite volume method, was applied successfully
to solve the IHCP for determining the heat transfer coefficient of one
surface of a flat plate based on the thermographic temperature mea-
surements of the opposite surface [27]. In addition, the thermal conduc-
tivity in a one-dimensional heat conduction problem was successfully
estimated by applying the finite difference method and linear least-
squares-error method [28].

Although many optimization methods have been applied to the in-
verse problem for the solution of thermal conductivity, as well as heat
capacity or specific heat, all researcheswere simulated to get the inverse
results expected from thework in reference [16]. The authors estimated
the constant thermal diffusivity and thermal conductivity by using the
inversemethodwith an experiment tomeasure temperature. However,
during the experiment the heat convection, which always occurs, was
not considered. In this study, an experimental transient temperature
that took into account the convection and radiation of the surrounding
environmentwas established to estimate temperature-dependent ther-
mal conductivity and specific heat through solving the inverse heat
transfer problem. Moreover, the BFGS method [29], that very few au-
thors have used before [30] to predict thermal properties, combined
the simple step method for estimation of unknown quantities.

2. Method and mode definition

2.1. Mathematical model

In order to illustrate themethod for use in simultaneously determin-
ing unknown temperature-dependent thermal conductivity, k(T), and
heat capacity per unit volume, Cp(T), in a material, a transient inverse
heat transfer problem is considered. A brass rod, with diameter D and
length L, for simulation as well as experimentation is supplied with a
fixed heat source at the end allowing natural convection aswell as radi-
ation, as shown in Fig. 1. The natural convection depends on the varia-
tion in surface temperature and thermophysical properties, and heat
transfer relations in natural convection are based on experiments. The
geometry of the problem in this study is a cylinder with horizontal con-
vection. Therefore, the heat transfer coefficient is determined in accor-
dance with the average Nusselt number [31] as follows:
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for RaD ≤ 1012 ð1Þ

where Pr and RaD are the Prandtl number and the Rayleigh number,
respectively. The calculation of the heat transfer coefficient is defined
in the following equation:

h ¼ kNuD
D

ð2Þ

where h is the heat transfer coefficient. In this study, the cylindrical rod
which is chosen for simulating and testing, is made from brass with a
high thermal conductivity. The Biot number is [31] Bi = hD/2k ≪ 0.1,
so the variation in temperature in the direction of the radius (along
the r axis) is very slight compared to the z direction. Therefore, accord-
ing to the conservation of heat energy and Fourier's law, the partial dif-
ferential heat transfer equation and associated initial and boundary
conditions can be written as:
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with initial condition:

T t; zð Þ ¼ T∞ at t ¼ 0 ð4Þ

and boundary conditions:
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Nomenclature

Ac surface area (m2)
a temperature-dependent factor of k(T)
Bi Biot number
b temperature-dependent factor of Cp(T)
Cp(T) specific heat (J/kg°C)
D diameter of test sample (m)
E updated matrix
h convection heat transfer coefficient (W/m2°C)
H Hessian matrix
I unit matrix
J object function
∇J gradient of object function
k(T) thermal conductivity (W/m °C)
L length of test sample (m)
M number of temperature measurement points
N number of unknown
Ni spatial grid number
Nt temporal grid number
NuD average Nusselt number
P
*

search direction
P perimeter of test sample (m)s
Pr Prandtl number
q heat generation (W)
RaD Rayleigh number
s Stefan–Boltzmann constant, 5.670E − 8(W/m2K4)
t time (s)
tf final time (s)
T(z, t) temperature (°C)
r,z coordinates
w
*

unknown vector

Greek symbols
σ standard deviation of measurement error (°C)
β search step size
λ Lagrange function
ρ density (kg/m3)

Superscripts
k value of last iteration
n value at time points

Subscripts
inv inverse solution
m measurement point
∞ properties for ambient temperature
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