Journal of Energy Chemistry 000 (2017) 1-9

Contents lists available at ScienceDirect

Journal of Energy Chemistry

journal homepage: www.elsevier.com/locate/jechem

http://www.journals.elsevier.com/

Review

Development of antimony sulfide-selenide Sb₂(S, Se)₃-based solar cells

Xiaomin Wang, Rongfeng Tang, Chunyan Wu, Changfei Zhu*, Tao Chen*

Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230026, Anhui, China

ARTICLE INFO

Article history: Received 28 July 2017 Revised 25 September 2017 Accepted 26 September 2017 Available online xxx

Keywords: Antimony sulfide-selenide Sb₂S₃ Sb₂Se₃ Solar cell Energy conversion

ABSTRACT

Antimony sulfide–selenide $Sb_2(S, Se)_3$, including Sb_2S_3 and Sb_2Se_3 , can be regarded as binary metal chalcogenides semiconductors since Sb_2S_3 and Sb_2Se_3 are isomorphous. They possess abundant elemental storage, nontoxicity, good stability with regard to moisture at elevated temperatures and suitable physical parameters for light absorption materials in solar cells. To date, quite a few attempts have been conducted in the materials synthesis, photovoltaic property investigation and device fabrication. Benefiting from previous investigation in thin film solar cells and new generation nanostructured solar cells, this class of materials has been applied in either sensitized-architecture or planar heterojunction solar cells. Decent power conversion efficiencies from 5% to 7.5% have been achieved. Apparently, further improvement on the efficiency is required for future practical applications. To give an overview of this research field, this paper displays some typical researches regarding the methodologies toward the antimony sulfide–selenide synthesis, development of interfacial materials and device fabrications, during which we highlight some critical findings that promote the efficiency enhancement. Finally, this paper proposes some outstanding issue regarding fundamental understanding of the materials, some viewpoints for the efficiency improvement and their future challenges in solar cell applications.

© 2017 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.

Xiaomin Wang obtained her B.S. degree in applied chemistry from Huaibei Normal University in 2015. She is now a Ph.D. student with Professor Tao Chen at the University of Science and Technology of China. Her research interests include the preparation of stable and reproducible Sb₂S₃ and Sb₂Se₃ films for solar cell applications

Chunyan Wu obtained her B.S. degree in materials chemistry from Huaibei Normal University in 2015. She is now a Ph.D. student with Professor Changfei Zhu at the University of Science and Technology of China. Her research interests include the preparation of uniform and reproducible Sb₂S₃ films via solution method for high efficiency solar cells.

Rongfeng Tang obtained her B.S. degree in chemistry from Liaocheng University in 2013. She is now a Ph.D. student with Professor Tao Chen at the University of Science and Technology of China. Her research interests include the synthesis of $\mathrm{Sb}_2\mathrm{S}_3$ thin film and structural design of solar cells.

Professor Changfei Zhu received his B.S. and Ph.D. degrees both from University of Science and Technology of China in 1984 and 1990, respectively. Afterwards, he was working in department of materials science and engineering, University of Science and Technology of China; he was promoted to full professor in 2000. His research interests include fundamental study and application of transitional metal oxide, wide band gap semiconductor and new concept solar cells.

E-mail addresses: cfzhu@ustc.edu.cn (C. Zhu), tchenmse@ustc.edu.cn (T. Chen).

https://doi.org/10.1016/j.jechem.2017.09.031

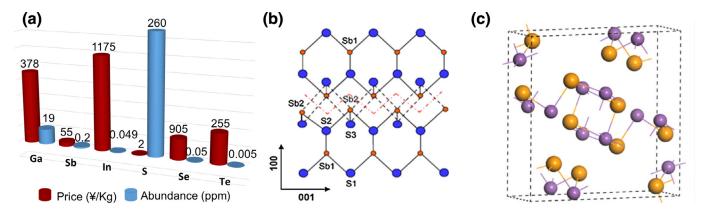
2095-4956/© 2017 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.

Please cite this article as: X. Wang et al., Development of antimony sulfide-selenide Sb₂(S, Se)₃-based solar cells, Journal of Energy Chemistry (2017), https://doi.org/10.1016/j.jechem.2017.09.031

^{*} Corresponding authors.

Professor Tao Chen received his Ph.D. degree in Chemistry from Nanyang Technological University (Singapore) in 2010. In 2011, he joined the Department of Physics, the Chinese University of Hong Kong, working as a research assistant professor. Since 2015, he has been a professor at the department of materials science and engineering, University of Science and Technology of China. His research interests include materials science, fabrication and engineering of antimony sulfide–selenide (Sb₂(S,Se)₃) solar cells.

1. Introduction


Solar energy exists in irradiant form. Converting the irradiant energy into electricity by solar cell is one of the significant practical methods to utilize solar energy. Since the first demonstration of silicon solar cell in 1954 at Bell laboratories by Chapin, Souther and Pearson, researchers have exploited many kinds of active materials for solar energy conversion. The ultimate goal is to develop a solar cell that can simultaneously meet the so-called goldentriangle requirements: low cost, high power conversion efficiency (PCE) and long-term stability. Although the production cost of silicon solar cell gradually decreased year by year, the price is still higher than the electricity generation by conventional fossil fuels. The second generation thin-film solar cells, such as those based on Cu(In,Ga)Se₂ (CIGS) and CdTe, are able to reduce the cost, they also achieved PCE of around 22% [1,2], however, much more efforts are still needed in the technological development with regard to large area production. In addition, the scarcity of indium and toxic Cd are potential problems in the large area practical applications.

The third generation emerging solar cells adopt low cost functional materials that are promising for grid parity application, while they are still under fundamental investigation. For instance, substitution of In and Ga in CIGS for Zn and Sn leads to the formation of Cu₂ZnSn(S,Se)₄ (CZTS) light absorbing material, which contains only earth-abundant elements. The abundant storage of Zn and Sn guarantees low materials cost; this kind of inorganic semiconducting compound is also stable. With several years of intense investigation, the PCE has reached 12.6% in 2012 [3]. However, due to the difficulty in defect manipulation, further improving PCE poses grant challenge. Dye-sensitized solar cells and polymer solar cells possess unique properties such as colorful and flexible characteristics [4-9]. They can be applied in the building-integrated photovoltaics or flexible devices. However, the long-term stability and attainable PCEs require significant enhancement. Most recently, organometal trihalide perovskite, e.g. CH₃NH₃PbI₃, based solar cells have achieved unprecedented progress with PCE increasing from 3.8% in 2009 to 22.1% in 2016 [10,11]. This PCE is on par with those of second generation thin-film solar cells. Nonetheless, it considerably degrades in days in moderate moisture. The sensitivity to moisture is believed to be an obstacle in the practical application of perovskite solar cell. Engineering the crystal structure as well as the device configuration is able to remarkably improve the lifetime of perovskite solar cells [12–16], while essential breakthrough in extending the lifetime is critical for the transition of this technology into industrial applications.

In addition to the above widely investigated light absorption materials and device configurations, some researchers have attempted to utilize unclassical materials for solar cell construction, such as Cu₂SnS₃ [17–19], Cu₂GeS₃ [20], Cu₂(Sn,Ge)S₃ [21], GeSe [22], Sb₂(S,Se)₃ [23,24], etc. These materials contain earthabundant elements and have high stability. Solar cells based on these classes of semiconducting materials have delivered PCEs of 4.63%, 2.67%, 6.7%, 1.48% and >6.0%, respectively for Cu_2SnS_3 [17–19], Cu₂GeS₃ [20], Cu₂(Sn,Ge)S₃ [21], GeSe [22], Sb₂(S,Se)₃ [23,24]. Compared with the extensively studied light absorption materials and well-established device structures, these materials did not receive much attention. As a result, many problems associated with the materials synthesis, physical properties, interfacial engineering and device construction remain unresolved. In this paper, we focus on Sb₂(S,Se)₃, including Sb₂S₃ and Sb₂Se₃ unless otherwise stated, based solar cells with special attention to the fundamental understanding, materials synthesis, device construction and performance enhancement strategies. Previously, an excellent review described the Sb₂Se₃ solar cell [25]. Here, we attempt to formulate the Sb_2S_3 , Sb_2Se_3 and $Sb_2(S_{1-x}Se_x)_3$ together as light absorber materials and make comparisons.

2. Materials properties of Sb₂S₃ and Sb₂Se₃

In specific, the elemental storage of Sb, S and Se in earth crust are 0.2, 260 and 0.05 ppm, respectively. The storage of Sb and S are considerably higher than those of In (0.049 ppm) and Te (0.005 ppm). This abundant storage set the basement for solar panel production in large scale at low cost, the relevant price and abundance of the corresponding elements are summarized in Fig. 1(a). In addition, all of the three elements are not included in the list of highly toxic or carcinogenic materials by Chinese, American as well as European Union regulation authorities. They can be regarded as environmental benign materials. In addition, they are binary compound. The controlling over the phase formation is not that rigorous. Furthermore, the melting points of Sb₂S₃ and Sb₂Se₃ are 500 and 608 °C, respectively, indicating low phase formation

Fig. 1. (a) Price and earth abundance of G_{a} , G_{b} , G_{b} , G_{c} (b) Crystal structure of $G_{b_{2}}$ viewed along the [010] direction. The Sb-S covalent bonds are indicated by solid lines and the weak van der Waals bonds by the black dashed lines. The cleavage trace is demarcated by the red dashed line. Reprinted with permission from Ref. [29] Copyright 2010 Elsevier Ltd; (c) Crystal structure of $G_{b_{2}}$, the violet balls stand for antimony and the yellow balls stand for selenium. Reprinted with permission from Ref. [30]. Copyright 2016 IOP Publishing Ltd.

Download English Version:

https://daneshyari.com/en/article/6529518

Download Persian Version:

https://daneshyari.com/article/6529518

<u>Daneshyari.com</u>