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Available online 31 December 2015 In this work, electrical capacitance tomography (ECT) and neural networks were used to automatically identify
two-phase flow patterns for refrigerant R-134a flowing in a horizontal tube. In laboratory experiments, high-
speed images were recorded for human classification of liquid–vapor flow patterns. The corresponding
permittivity data obtained from tomograms was then used to train feedforward neural networks to recognize
flow patterns. An objective was to determine which subsets of data derived from tomograms could be used as
input data by a neural network to classify nine liquid–vapor flow patterns. Another objective was to determine
which subsets of input data provide high identification success when analyzed by a neural network. Transitional
flowpatterns associatedwith common horizontal flowpatterns were considered. A unique feature of the current
work was the use of the vertical center of mass coordinate in pattern classification. The highest classification
success rates occurred using neural network input which included the probability density functions (in time)
for both spatially averaged permittivity and center of mass location in addition to the four statistical moments
(in time) for spatially averaged permittivity data. The combination of these input data resulted in an average
success rate of 98.1% for nine flow patterns. In addition, 99% of the experimental runs were either correctly
classified or misclassified by only one flow pattern.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding the two-phase flow behavior of refrigerants is im-
portant for the design of advanced aircraft cooling systems. Specifically,
the classification of liquid–vapor structures into flow patterns is useful
for predicting heat transfer rates and, ultimately, system performance.
Most flow and heat transfer correlations require a priori knowledge of
the two-phase flow pattern and are based on steady-state conditions
[1,2]. Although flow pattern identification can be performed using
high-speed imaging, this method generally relies on the visual interpre-
tation of liquid–vapor patterns. Unfortunately, visual interpretation can
be highly subjective [2]. As a consequence, numerous flow pattern
classifications have been defined in the past [3–7]. In contrast to visual
observation, which is often impractical, non-visual sensor signals can
be analyzed to provide more objective classifications. Moreover, sensor
signals are desired as inputs to real-time modeling and control.

Capacitance techniques are non-invasive and rely on differences in
electrical permittivity to distinguish between liquid and vapor phases
[2,8–9]. Capacitance measurements acquired simultaneously with

high-speed videos of air-water flows have been used to identify two-
phase flow patterns [2]. In addition, encouraging results involving the
identification of two-phase flow patterns of refrigerants have been
obtained using a capacitance probe that produced void fraction signals
[10]. However, a single capacitance probe (as in [2,10]) may not fully
characterize the liquid–vapor spatial distributionwithin a flow passage.
This could lead to incorrect assumptions about the actual flowbehavior.
In contrast, electrical capacitance tomography (ECT) can provide a
nearly instantaneous view of the liquid–vapor distribution within the
system without optical access. Tomography may be used to derive the
permittivity distribution from capacitance data [8,9]. The permittivity
distribution, in turn, can provide the spatial distribution of the liquid
and vapor phases. Many past research efforts involving ECT have
focused on industrial applications where qualitative results were
sufficient [8]. The use of ECT in detailed studies of liquid and vapor in
horizontal flow has been limited, much less with the use of dielectric
refrigerants which are of interest here [8,10,11].

Artificial neural networks are used for pattern recognition and trend
prediction involving complex processes. In an artificial neural network,
the neurons (often called nodes) receive input signals, and each node
calculates an individual output using a weighted sum and nonlinear
activation function. Learning is achieved by the adjustment of these
weights [12]. Past studies suggest that there is potential for using a
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neural network to objectively classify liquid–vapor distribution data
[13–15]. These studies have used measured or simulated impedance
(conductance) signals rather than input from ECT [13–16]. In addition,
nearly all previous flow identification studies that have used neural
networks were performed for vertical flows.

In this paper, the use of ECT together with neural networks to
identify liquid–vapor flow patterns is explored. For this purpose, exper-
iments involving the horizontal flow of refrigerant R-134a through a
tube of small diameter (7 mm) were conducted. A horizontal-two
phase flow can be categorized into one of several flow patterns which
may include bubbly, plug, slug, stratified-wavy, and annular flows
[17]. Here, previous work is extended by including additional transi-
tional flow patterns corresponding to four of the above flow patterns

for horizontal flow. The names of the transitional flow patterns are
derived from these four flow patterns and are given here as the
bubbly-transitional, plug-transitional, slug-transitional, and stratified-
wavy-transitional patterns. In the current work, high-speed images of
theflowpatternswere recorded for purposes of initial human classifica-
tion and final training verification. Processed permittivity data obtained
from two-dimensional tomogramswas used to train neural networks. A
goal was to classify nine horizontal two-phase flow patterns with
reasonable speed using neural networks as a predictive tool. Input
information for the neural networks included the spatially averaged
permittivity, center of mass location, and their probability density
functions (in time). It also included four statistical moments (in time)
for spatially averaged permittivity data. Another objective was to deter-
minewhich subsets of input data provide high identification success for
the flow patterns when analyzed by a neural network.

2. Experimental setup

To explore the use of ECT in the identification of two-phase flowpat-
terns, laboratory experiments were performed in which liquid–vapor
flow patterns were generated for flow in a horizontal tube. Fig. 1
shows a schematic of the experimental arrangement in which liquid
R-134a was pumped through a heater to produce two-phase flow. To
obtain different liquid–vapor flow patterns, the volumetric flow rates
were adjusted in the range 0.1 to 0.5 L/min, while varying the heater
power between 0 and 500 W. Downstream from the heated section,
the two-phase flow entered a fused quartz observation section (tube
with 7 mm ID). The observation section permitted imaging using a
high speed video camera (Phantom V4.2) and had thermocouples and
pressure transducers located at 1.2 m increments along its length. The
high speed camera was used to compare actual images of liquid–vapor
flow with ECT characterization. R-134a passed through the cylindrical
ECT sensor (ITS, 0690). Fig. 1 shows one flow path for R-134a and
another for cooling water which was used to condense R-134a vapor
in the condenser (Lytron, LL510G02). The water was cooled by a chiller
(PolyScience, 4260 T).

Table 1 lists the measurement uncertainties associated with the
thermocouples, pressure transducers (Omega PX-409), and flow
meter (McMillan) shown in Fig. 1. Experiments were performed with
the refrigerant saturation conditions at the ambient temperature of
20 °C. Relatively small temperature differences (~1 °C) between the
ambient and refrigerant in the observation section of tubing provided
reasonable grounds to neglect the heat transfer between them.

The ECT system consists of a multi-electrode sensor, electronics for
capacitance determination, and data acquisition components [18]. The
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Fig. 1. Schematic of two phase flow system. Red represents the refrigerant, and blue represents chilled water.

Nomenclature

Ai Individual pixel area [m2]
AT Sum of all pixel areas [m2]
D Tube diameter [m]
Db Bubble diameter [m]
ECT Electrical capacitance tomography
L Length [m]
PDF Probability density function
t Time [s]
yc(t) Center of mass vertical coordinate normalized by the

tube diameter
yc(t)PDF Probability density function for center of mass (normal-

ized) vertical coordinate
yi Vertical coordinate normalized by the tube diameter for

the ith pixel
εð~x; tÞ Permittivity determined by tomography [F/m]
εf Liquid permittivity [F/m]
εg Vapor permittivity [F/m]
ε�ð~x; tÞ Normalized permittivity
ε�ðtÞ Spatial average of normalized permittivity
ε�ðtÞPDF Probability density function of ε�ðtÞ
ε�i ð~x; tÞ Normalized permittivity for an individual pixel
hε�ðtÞi Time averaged ε�ðtÞ
hε�ðtÞiKURT Kurtosis of time averaged ε�ðtÞ
hε�ðtÞiSKEW Skewness of time averaged ε�ðtÞ
ε�ðtÞVAR Variance of time averaged ε�ðtÞ
~x Spatial locations, x and y [m]
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