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With the rapid development of the Computational Fluid Dynamics (CFD), it is in a high demand and still remains
unresolved to compute hypersonic heating accurately. In the past years, many researchers tried to solve this
problem by studying the upwind scheme's choice. However, most of them just focused on the following two as-
pects: the scheme's level of robustness against the shock anomaly and the scheme's resolution in capturing dis-
continuity. Few people relate this problem to the scheme's level of accuracy at low speeds. In this paper, we
conduct a systematic study on this issue. Results in our test cases show that a high level of accuracy at low speeds
is beneficial to the hypersonic heating computations. Also, the AUSMPWM scheme performs well in hypersonic
heating computations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The past years have witnessed tremendous growth in Computation-
al Fluid Dynamics (CFD). However, it is still hard to predict surface
heating accurately in hypersonic computations [1]. In general, re-
searchers studied this problem frommany aspects, such as the compu-
tationalmesh [2], the computational scheme, and the physicalmodeling
[3], etc.

In terms of the computational scheme, many researchers attributed
this problem to the upwind schemes' two major defects: low levels of
resolution in capturing discontinuity and low levels of robustness
against the shock anomaly [4,5]. However, many upwind schemes'
levels of accuracy in hypersonic heating predictions are still unsatisfac-
tory in the following cases: the normal spacing at the wall is small
enough [6] and the shock anomaly is dispelled by generating the com-
putational mesh seriously.

Up to now, Roe's FDS [7] and AUSM+ [8] havewon high praises and
been widely used in industry. Many well-known codes, such as
OVERFLOWand LAURA, have options to use them. However, researches
find that they are essentially of the same form and not applicable to low
speeds' computations [9,10]. It is a traditional way to combine these up-
wind schemeswith a preconditioningmatrix at low speeds [11–15]. But
they will return to their original forms at supersonic speeds due to the

global cut-off problem [16,17]. Thus, the preconditioning methods are
of no help to the hypersonic heating computations. When a hypersonic
computation is conducted by using such shock capturing methods, the
accuracy in the low speeds' zones may be deteriorated, especially in
boundary layers which are filled with low speeds' flows and critical
for the hypersonic heating computations in the authors' opinions. Un-
fortunately, few people notice this issue.

To be with high levels of accuracy at low speeds and free from the
cut-off problem, some researchers made a thorough mathematical
study and proposed some new schemes [5,16]. For example, Shima
and his co-workers found that the dissipation in the AUSM type
schemes' pressure flux might be too large at low speeds. To dispel this
defect, they adopted a function tomonitor the dissipation and proposed
SLAU [18]. Ref. [15] shows that the SLAU scheme performs much better
than AUSM+ at low speeds. Moreover, the authors proposed the
AUSMPWM scheme which is with a higher level of accuracy at low
speeds [11]. On the other hand, Fillion improved the original Roe
scheme by centering the pressure gradient and proposed the F-Roe
scheme [19]. Numerical tests show that the F-Roe scheme is also with
a high level of accuracy at low speeds [17].

Theoretically, the F-Roe scheme is the same as the original Roe
scheme at supersonic speeds. Also, the AUSMPWM scheme returns to
the AUSMPW+ scheme at high speeds [20]. Thus, the AUSMPWM
scheme and the F-Roe scheme can be regarded as the improvements
for the AUSMPW+ scheme and the original Roe scheme at low speeds.
And they should perform better in hypersonic heating computations
due to their lower dissipations and higher resolutions. However, to
the best of the authors' knowledge, there is still no thorough study on
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this issue, especially when they are combined with different limiters or
different computational meshes. In fact, these properties are so impor-
tant in practical simulations that people should pay special attention
to them.

This paper is organized as follows. In the second section, we will
briefly overview the Navier–Stokes equations. Also, an introduction
to the upwind schemes aforementioned will be presented in this
section. Section 3 will give some test cases. The last section contains
concluding remarks.

2. Navier–Stokes equations and upwind schemes

2.1. Navier–Stokes equations

Navier–Stokes equations are usually used to describe the motion of
the viscous flows. It can be written in the following form:

∂q
∂t

þ ∇ � F qð Þ−∇ � Fv q;∇qð Þ ¼ 0 ð1Þ

where q is the conservative variable vector, s is the auxiliary variable
vector, F(q) is the inviscid flux vector and Fv(q,s) is the viscous flux
vector.

For two-dimensional cases, we have
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where ρ is density, u and v are velocity vector components, p is
static pressure, e is internal energy, T is temperature, μ is the dynamic
viscosity, β is the bulk viscosity, and κ is the thermal conductivity
coefficient.

2.2. Upwind schemes

2.2.1. The original Roe scheme [7]
Based on the Godunov's idea [21], Roe linearized the Jacobianmatri-

ces by three rules in his paper. It is a three-wave approximate Riemann
solver and FDS type scheme with the following form.

F1=2 ¼ 1
2

FL þ FRð Þ−1
2
R Λ̂��� ���LΔq: ð10Þ

The (^) stands for Roe-averaged values, R and L are right and left ei-
genvectors, respectively, and Λ is the diagonal matrix of characteristic
speeds.

2.2.2. F-Roe [19]
Realizing the idea of centering the pressure gradient, Fillion pro-

posed the F-Roe scheme by adding a pressure correction to themomen-
tum flux in Eq. (10) as follows:

F1=2 ¼ 1
2

FL þ FRð Þ−1
2
R Λ̂��� ���LΔqþ1

2
1− f Mð Þ½ �

0
ρanxΔU
ρanyΔU

0

2
664

3
775 ð11Þ

where

f Mð Þ ¼ min M;1ð Þ

U ¼ u � nx þ v � ny

and a is the numerical sound speed.

2.2.3. AUSMPW+ [8]
Kim proposed the AUSMPW+ scheme which split the inviscid flux

into an advection term and a pressure term, respectively. It is widely
used featuring simplicity and robustness against the shock-related
anomaly.

The AUSMPW+ scheme can be written in the following form:
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More details can be found in the Ref. [22].

2.2.4. AUSMPWM [11]
The AUSMPW+ scheme is for the compressible solver and meets

the problem of large disparity between the fluid speed and the acoustic
speed, which may leads to deteriorated accuracy in low speeds'
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