

Contents lists available at ScienceDirect

### Journal of Energy Chemistry





http://www.journals.elsevier.com/

# Cu<sup>+</sup>-incorporated TiO<sub>2</sub> overlayer on Cu<sub>2</sub>O nanowire photocathodes for enhanced photoelectrochemical conversion of CO<sub>2</sub> to methanol

Kangha Lee, Seokwon Lee, Hyunjin Cho, Sunil Jeong, Whi Dong Kim, Sooho Lee, Doh C. Lee\*

Department of Chemical and Biomolecular Engineering (BK21+ program), KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Deajeon 34141, Republic of Korea

#### ARTICLE INFO

Article history: Received 31 January 2017 Revised 19 April 2017 Accepted 26 April 2017 Available online 2 June 2017

Keywords:
Photoelectrochemical CO<sub>2</sub> reduction
Methanol generation
Copper oxide
Titanium dioxide
Cu<sup>+</sup> catalyst

#### ABSTRACT

In this paper, we report photoelectrochemical (PEC) conversion of carbon dioxide ( $CO_2$ ) using photocathodes based on  $Cu_2O$  nanowires (NWs) overcoated with  $Cu^+$ -incorporated crystalline  $TiO_2$  ( $TiO_2-Cu^+$ ) shell.  $Cu_2O$  NW photocathodes show remanent photocurrent of 5.3% after 30 min of PEC reduction of  $CO_2$ . After coating  $Cu_2O$  with  $TiO_2-Cu^+$  overlayer, the remanent photocurrent is 27.6%, which is an increase by 5.2 fold. The charge transfer resistance of  $Cu_2O/TiO_2-Cu^+$  is  $0.423 \, k\Omega/cm^2$ , whereas  $Cu_2O$  photocathode shows resistivity of  $0.781 \, k\Omega/cm^2$  under irradiation. Mott–Schottky analysis reveals that  $Cu^+$  species embedded in  $TiO_2$  layer is responsible for enhanced adsorption of  $CO_2$  on  $TiO_2$  surface, as evidenced by the decrease of capacitance in the Helmholtz layer. On account of these electrochemical and electronic effects by the  $Cu^+$  species, the Faradaic efficiency (FE) of photocathodes reaches as high as 56.5% when  $TiO_2-Cu^+$  is added to  $Cu_2O$ , showing drastic increase from 23.6% by bare  $Cu_2O$  photocathodes.

© 2017 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.

#### 1. Introduction

Growing concern over the ever-increasing level of carbon dioxide (CO2) in atmosphere has been strong impetus to search for solutions to mitigate the issue [1-3]. An ultimate formula for lowering CO2 concentration would include conversion of CO2 into chemicals that can be harnessed in a form of value-added product. For chemical conversion of CO<sub>2</sub>, various approaches have been proposed and investigated: heterogeneous catalysis, electrocatalysis, and bio-mitigation using microalgae, to name a few [4-9]. Yet, it requires high external energy (in the range of several tens to hundreds kI/mol) to convert thermodynamically stable CO<sub>2</sub> (standard heat of formation for  $CO_2$ ,  $\Delta H^{\circ}_{f} = -393.51 \text{ kJ/mol}$  [10,11], demanding high temperature in gas-phase reactions [6–8] or large overpotential in electrochemical reactions [4]. In photocatalytic and photoelectrochemical (PEC) reduction of CO2 into hydrocarbons (e.g., formic acid, methanol, or methane), sunlight serves as an energy source, hence increasing possibility of completely carbon-neutral energy production. Critical to the efficiency of the photocatalytic and photoelectrochemical conversion of CO<sub>2</sub> is to design structure of photocatalysts or photoelectrodes in such a way that (i) photogenerated charge carriers in semiconductors are effectively utilized in the  $CO_2$  reduction and (ii) catalytic surface lowers the energy of intermediate species as a result of controlled adsorption of  $CO_2$  on the surface [12,13].

PEC reduction of CO<sub>2</sub> is an excellent test bed to quantify these effects; however, the poor stability of photoelectrodes and low Faradaic efficiency (FE) of overall system have posed major challenges.

Among all the semiconductors under investigation for developing efficient PEC CO2 reduction, cuprous oxide (Cu2O) has been studied for the use in photocatalysis due to its low toxicity, high abundance and low processing cost compared with other p-type semiconductors [14-17]. In addition, Cu<sub>2</sub>O has narrow band gap energy (1.9-2.2 eV) to utilize sunlight and thermodynamically favorable energy band positions with the conduction band lying more negative of the CO<sub>2</sub> reduction potential [18]. Cu<sub>2</sub>O shows the theoretical maximum solar-to-fuel conversion efficiency 18% and maximum photocurrent density is calculated to be 14.7 mA/cm<sup>2</sup> [19]. However, photocurrents generated from PEC CO<sub>2</sub> reduction in reported studies have been much lower than the theoretical value, with the photocathodes exhibiting poor stability due to photocorrosion [16,20-22]. Photocorrosion is a common problem for narrow band gap semiconductors (i.e.,  $E_{\rm g} < 2\,{\rm eV}$ ) in an electrolyte solution since their self-reduction/oxidation potential levels lie between the conduction and valence band energy levels of semiconductors. The photocorrosion of semiconductors lowers the overall FE of PEC system since a large portion of the photo-generated charges are lost

<sup>\*</sup> Corresponding author. E-mail address: dclee@kaist.edu (D.C. Lee).

by photocorrosion of  $\text{Cu}_2\text{O}$  and/or by the trapping process at the trap sites induced by photocorrosion [23]. Thus, the design and fabrication with high FE are important.

Several approaches have been reported in the way of increasing FE of photocathodes for CO<sub>2</sub> reduction. Won et al. investigated the FE and selectivity of Cu<sub>2</sub>O/CuO photocathodes by introducing various metal co-catalysts for methanol and formic acid production from CO<sub>2</sub> [20]. To produce more valuable hydrocarbons such as methanol with high selectivity, Cu<sup>+</sup> incorporation to TiO<sub>2</sub> has been suggested as well. Liu et al. reported that Cu(I)/TiO<sub>2-x</sub> provides the active adsorption and reaction site of CO<sub>2</sub> and also can spontaneously dissociate CO<sub>2</sub> by in-situ FTIR analysis [24]. It is suggested that  $Cu^+$  state on  $TiO_2$  surface is the primary active site for photoreduction of CO<sub>2</sub> and selectively produced methanol [25]. Slamet et al. also showed that Cu-doped TiO2 catalyst selectively produce methanol from CO<sub>2</sub> [26]. In addition to the experimental proof, computational calculation revealed that selective methanol production from CO2 on Cu(I) oxide nanolayers and clusters is favorable considering the binding and activation energy of intermediate species [10]. However, to the best of our knowledge, Cu+incorporated TiO2 has not been used as a protective overlayer of narrow band gap semiconductor and has not been applied to PEC CO<sub>2</sub> reduction yet.

In this study, we examine  $\text{Cu}_2\text{O}$  nanowire (NW)-based photocathodes for PEC conversion of  $\text{CO}_2$ . Our primary focus lies on understanding what affects the FE of  $\text{Cu}_2\text{O}$ -based photocathodes during PEC reduction of  $\text{CO}_2$ . Various electrochemical analyses were performed in order to elucidate the characteristics of photogenerated charge carriers in  $\text{Cu}_2\text{O}$ -based photocathodes.

#### 2. Experimental

#### 2.1. Materials

The following chemicals were purchased from Sigma-Aldrich and used without additional treatment: copper(II) sulfate pentahydrate (CuSO<sub>4</sub>+5H<sub>2</sub>O,  $\geq$  99.99%), copper(II) chloride dihydrate (CuCl<sub>2</sub>+2H<sub>2</sub>O,  $\geq$  99.99%), potassium hydroxide (KOH,  $\geq$  85%), sodium hydroxide (NaOH,  $\geq$  97%), titanium butoxide (TOB, 97%), potassium bicarbonate (KHCO<sub>3</sub>, 99.7%) and ethanol (anhydrous,  $\geq$  99.5%).

#### 2.2. Fabrication of photocathodes

Cu film was prepared by electrodeposition from saturated copper(II) sulfate pentahydrate (CuSO<sub>4</sub>•5H<sub>2</sub>O) aqueous solution at 10 V for 20 s and 5 V for 150 s on fluorine-doped tin oxide (FTO) using a Pt counter electrode. After Cu deposition, the substrate was washed with deionized water (DI-H<sub>2</sub>O) and ethanol and then dried under air flow. The Cu(OH)<sub>2</sub> nanowires (NWs) were prepared by anodizing Cu coated FTO substrates at constant current density (10 mA/cm<sup>2</sup>) at room temperature in 3 M KOH solution for 180 s and then washed with DI-H<sub>2</sub>O and ethanol [14]. The Cu(OH)<sub>2</sub> NWs were transformed into Cu<sub>2</sub>O NWs by thermal annealing at 600 °C in Ar atmosphere for 4 h. The heating rate was 30 °C/min.

Deposition method of amorphous  $TiO_2$  (a- $TiO_2$ ) was slightly modified from the literature [27]. a- $TiO_2$  was deposited on  $Cu_2O$  NWs by dip coating. The precursor solution was 0.5 mL TOB in 20 mL anhydrous ethanol. The  $Cu_2O$  NWs were immersed into the solution for 1 min followed by air drying for 1 min. The dipping process was carried out five times. To crystallize a- $TiO_2$ ,  $Cu_2O/a$ - $TiO_2$  electrode was annealed in Ar atmosphere for 5 h at 550 °C.

Cu $^+$  species was incorporated onto c-TiO $_2$  surface by immersing a Cu $_2$ O/TiO $_2$  electrode in 3 mM CuCl $_2$  in 0.25 M NaOH/ethanol solution. After 12 h, the electrode was washed with ethanol and annealed in Ar atmosphere for 1 h at 300 °C. Finally, the samples were stored in an Ar-filled glove box.

#### 2.3. Physiochemical characterization

Different types of photocathodes were characterized by field emission scanning electron microscopy (SEM), field emission transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and X-ray diffraction (XRD). SEM measurements were performed with a NOVA230 (FEI). TEM measurements were performed with a Tecnai F20 (FEI) operated at an acceleration voltage of 200 kV. XPS and AES measurements were performed with a Sigma Probe (Thermo VG Scientific). XRD measurements were performed with an Ultima IV (RIGAKU) operated with a Cu $K_{\alpha}$  source ( $\lambda = 1.54$  Å). The data was collected with a scan rate of 3°/min ranging from 20° to 80°.

#### 2.4. PEC measurement

We conducted PEC reduction of  $CO_2$  in a three electrode configuration cell using Pt wire with glass tube and membrane as the counter electrode to prevent backward reaction on Pt electrode and Ag/AgCl (3 M NaCl) as the reference electrode. The potential measured using a Ag/AgCl reference electrode has been converted to the reversible hydrogen electrode (RHE) using the following formula:

$$E_{\text{RHE}} = E_{\text{Ag/AgCl}} + 0.197 + 0.059 \text{ pH}$$

Different photocathodes with an exposed surface area of 0.25 cm<sup>2</sup> were connected to custom-made Teflon reactor. An aqueous solution of CO<sub>2</sub>-saturated 0.3 M KHCO<sub>3</sub> (pH 6.8) was used as the electrolyte during the measurement. Linear sweep voltammetry (LSV) was carried out using a VERTEX potentiostat (Ivium Technologies) at a scan rate of 50 mV/s under a chopped illumination of 100 mW/cm (using LS 150 with AM1.5 G filter, Abet Technologies). We performed the stability test under chopped illumination with 1 min of time interval at 0.3 V (vs. RHE) for 30 min.

#### 2.5. Impedance measurements

The electrochemical impedance measurements were carried out using the same experimental setup. The Nyquist plots were obtained in the dark and under AM1.5 G illumination at an applied potential of 0.3 V (vs. RHE) within the frequency range of 100 kHz–100 mHz using an amplitude of 10 mV. We also performed the Mott–Schottky experiments with the potential range of 0.3–0.8 V (vs. RHE) using three different frequencies of 15, 25, and 50 Hz.

#### 3. Results and discussion

## 3.1. Structural characterization of $Cu_2O$ nanowires and $TiO_2-Cu^+$ overlayer

Fig. 1(a) shows the fabrication process of different photocathodes. First,  $Cu(OH)_2$  NWs were transformed into crystalline  $Cu_2O$ NWs via thermal annealing at  $600\,^{\circ}C$  (Fig. 1(b)). After dip-coating in  $TiO_2$  precursor solution, thin layer of a- $TiO_2$  was formed on the surface of  $Cu_2O$  NWs and TEM images are presented in Fig. S1 (Supplementary materials). a- $TiO_2$  was transformed into crystalline anatase  $TiO_2$  (c- $TiO_2$ ) by annealing at  $550\,^{\circ}C$  in Ar atmosphere. Crystal structure of  $TiO_2$  was confirmed to be anatase using both XRD and TEM analyses (Fig. 1). Because of the volume shrinkage of the a- $TiO_2$  during crystallization [28], thickness of c- $TiO_2$  shell was not as uniform as that of a- $TiO_2$ , but the c- $TiO_2$  shell also appear to coat entire  $Cu_2O$  surface (Fig. S1). After incorporation of Cu species, we did not notice change in SEM and TEM analysis, and also could

### Download English Version:

# https://daneshyari.com/en/article/6529891

Download Persian Version:

https://daneshyari.com/article/6529891

<u>Daneshyari.com</u>