Accepted Manuscript

Integrated Ni2P nanosheet arrays on three-dimensional Ni foam for highly efficient water reduction and oxidation

Jintao Ren , Zhongpan Hu , Chong Chen , Yuping Liu , Zhongyong Yuan

PII: S2095-4956(17)30398-4

DOI: 10.1016/j.jechem.2017.07.016

Reference: JECHEM 360

To appear in: Journal of Energy Chemistry

Received date: 12 May 2017 Revised date: 16 July 2017 Accepted date: 24 July 2017

Please cite this article as: Jintao Ren , Zhongpan Hu , Chong Chen , Yuping Liu , Zhongyong Yuan , Integrated Ni2P nanosheet arrays on three-dimensional Ni foam for highly efficient water reduction and oxidation, *Journal of Energy Chemistry* (2017), doi: 10.1016/j.jechem.2017.07.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Integrated Ni2P nanosheet arrays on three-dimensional Ni foam for highly efficient water reduction and oxidation

Jintao Ren^{a,b}, Zhongpan Hu^{a,b}, Chong Chen^{a,b}, Yuping Liub, Zhongyong Yuan^{a,b,*}zyyuan@nankai.edu.cn.

^aNational Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin 300353, China

^bKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China

Abstract

The large-scale synthesis of efficient nonprecious bifunctional electrocatalysts for overall water splitting is a great challenge for future renewable energy conversion systems. Herein, Ni₂P nanosheet arrays directly grown on three-dimensional (3D) Ni foam (NiP/NF) are fabricated by hydrothermal treatment of metallic Ni foam with H₂O₂ solution and subsequent phosphidation with NaH₂PO₂. The NiP/NF as electrocatalyst exhibits superior activities for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Most importantly, employing both as the cathode and anode for an alkaline water electrolyzer, NiP/NF only requires a cell voltage of 1.63 V to reach a current density of 10 mV cm⁻², together with stronger durability. Preliminary catalytic information suggests that the tailored 3D superstructure and integrated electrode configurations afford improved active sties and enhanced electron/mass transfer, responding for the outstanding activity and stability.

^{*} Corresponding author

Download English Version:

https://daneshyari.com/en/article/6529954

Download Persian Version:

https://daneshyari.com/article/6529954

<u>Daneshyari.com</u>