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Dissipative particle dynamics with energy conservation (eDPD) was used to investigate the effect of variable
thermal properties on natural convection in liquid water over a wide range of Rayleigh Numbers. The problem
selected for this study was a differential heated cavity. The eDPD results were compared to the finite volume so-
lutions and the eDPDmethod predicted the effects of temperature-dependent conductivity and viscosity on tem-
perature and flow fields throughout the cavity properly. The eDPD temperature-dependent model was able to
capture the basic features of natural convection, such as development of thermal boundary layers, and develop-
ment of natural convection circulation cellswithin the cavity. The eDPD results experienced some degree of com-
pressibility at high values of Ra numbers (Ra= 105) and this problemwas resolved by tuning the speed of sound
of the eDPD model.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Dissipative particle dynamics (DPD) is a coarse-grained version
of the molecular dynamics method, which was introduced by
Hoogerbrugge and Koelman [1] to capture larger time and spatial scales
when compared to the molecular dynamics (MD) scales. The DPD
method is amesh-free based simulationmethod,where anyfluid is con-
sidered as a group of randomly scattered interacting particles that are
governed by the conservation of mass and momentum. Many
microfluidics and nanofluidics applications were investigated recently
by the DPD approach to reveal the essential information about the
microscopic structure of the physical processes encountered in these
applications [2–7].

Themajor advantages for using the DPD technique over the conven-
tional continuum methods (e.g., finite volumes and finite elements
methods) first is the inherent inclusion of thermal fluctuations in the
DPD model. These fluctuations enable a correct imitation of important
physical phenomena encountered at micro- and nanoscales, such as
heat diffusion, mass diffusion, and momentum diffusion. Practical ex-
amples that include thermal fluctuations are the thermal transport in
polymeric solutions, colloidal suspension, and phase change applica-
tions. Second, the DPD dominates over the conventional methods
when the spatial scales vary considerably across the physical domain
and span a wide range from macro- to nanoscales. Such resilience in
adaption to wide range of scales is inherent in DPD model and in con-
trast is considered as a major drawback of conventional continuum
models.

The DPD approach was extended by Español [8] and Avalos and
Mackie [9] to handle thermal transport by adding internal energy to
each DPD particle. This version of DPD is shown to conserve energy
and it is known as energy conservative dissipative particle dynamics
(eDPD) [8]. Since its introduction, the eDPDmethodwas applied to sev-
eral heat transfer applications by various researchers. Ripoll et al. [10]
and Ripoll and Español [11] studied one-dimensional heat conduction
and they showed that the method was able to model heat conduction
accurately. The method was extended to two-dimensional (2D) heat
conduction by Chaudhri and Lukes [12]. The method was further ap-
plied to heat conduction in nanocomposites by Qiao and He [13] and
heat conduction in nanofluids by He and Qiao [14] and Yamada et al.
[15]. Abu-Nada [16,17] implemented various types of boundary condi-
tions to 2Dheat conduction. Also,more recently, Li et al. [18] considered
the mass diffusivity and viscosity of the eDPD model to be temperature
dependent where they simulated a Poiseuille flow and steady heat con-
duction to validate their temperature dependent model for mass diffu-
sivity, Schmidt and Prandtl numbers.

In regard to convective heat transfer applications of the eDPDmodel,
Mackie et al. [19] applied the eDPD approach to heat flow in a differen-
tially heated cavity. Abu-Nada [20,21] studied natural convection via
two basic heat transfer problems, which are differentially heated enclo-
sures and Rayleigh–Bénard convection. The eDPD method was tested
over a wide range of Rayleigh numbers using several quantitative
benchmarks against finite volume solutions. Yamada et al. [22] studied
forced convection heat transfer in parallel plate channels by the eDPD
approach. The application of eDPD to other geometries was conducted
by Cao et al. [23]. Moreover, Abu-Nada [24] extended the eDPD ap-
proach to handle liquids by increasing the eDPD viscosity and producing
higher Prandtl numbers that mimic natural convection in water. Also,
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more recently, Cao et al. [25] and Abu-Nada [26–28] applied eDPD to
several mixed convection applications.

Based on the above-mentioned review, it is very important to extend
the application of the eDPD method to more fundamental problems in
convection heat transfer. Actually, in emerging fields of convective

heat transfer applications, such as natural heat transfer enhancement
using nanofluids, the temperature range in the flow domain could be
substantially large and the assumption of constant thermal properties
becomes questionable. Therefore, to apply the eDPD approach to such
convective applications it is very essential to consider the temperature
dependency of the thermal properties in the eDPDmodel. Consequent-
ly, the aim of the current work is to investigate natural convection in
water by considering the effect of temperature-dependent properties
of thermal conductivity and viscosity. This gives more insight on the
thermal transport in natural convection, which will help to advance
eDPD applicability to simulate nanoscale thermal transport applications
such as heat transfer enhancement using nanofluids. The problem con-
sidered in this study is natural convection in a differential heated cavity
having water as the working fluid. The eDPD model will be assessed
over a wide range of Rayleigh numbers.

2. eDPD governing equations

The eDPD method is a particle technique, which is based on pair-
wise interactions between neighboring particles within a cut-off radius.
The eDPD particles are coarse-grained particles where each eDPD parti-
cle represents a group of real fluid molecules. The motion of the parti-
cles is governed by conservation of mass, momentum and energy and
is described by the following set of equations, by employing the
Boussinesq approximation [20,24]:
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where β is the thermal expansion coefficient and g! is the gravity vector.
The heat flux vectors qijcond, qijvisc, and qij
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where rij = ri − rj and vij = vi − vj; eij is the unit vector pointing in the
direction from j to i. The parameter aij (in Eq. (4)) is a repulsion param-
eter between the eDPD particles. This parameter affects the interaction
between the particles and accordingly controls the equation of state and
compressibility of the eDPD system. Also, the parameters γij and σij in
Eqs. (5) and (6) are the strength of dissipative and random forces, re-
spectively. The random number ζij that appears in Eq. (6) is a random
number with a zero mean and unit variance which has the property
ζij = ζji to ensure the conservation of the total momentum of the
eDPD system [3–7].

The weight function w for the conservative force decreases mono-
tonically with particle–particle separation distance. It becomes zero be-
yond the cut-off length. In the present study, we followed the work of
Fan et al. [7] by using two differentweighting functions, one for the con-
servative force and the other one for the dissipative and random forces.

Nomenclature

a repulsion parameter
Cv specific heat at constant volume, J/kg·K
cs speed of sound
e unit vector
f force, N
g gravity vector
H cavity height, m
K Thermal conductivity function, W/m·K
k thermal conductivity, W/m·K
kB Boltzmann constant
ko parameter controlling the thermal conductivity of the

eDPD particle
n normal vector
p dimensional pressure, N/m2

Pr Prandtl number, Pr = νC/αC

q heat flux, W/m2

r position vector
rc cut-off radius
Ra Rayleigh number, Ra = gβ(TH − TC)H3/(νC αC)
T dimensional temperature, °C
t time, s
Uref reference velocity, m/s
v velocity vector
w weight function
W width of the cavity, m
x, y dimensional coordinates, m
X, Y dimensionless coordinates, X = x/H, Y = y/H
α thermal diffusivity, m2/s
αij random heat flux parameter
β thermal expansion coefficient, 1/K
γ dissipative force parameter
ζ random number for the momentum equation
ζe random number for the energy equation
θ dimensionless temperature, θ = (T − TC)/(TH − TC)
κ collisional heat flux parameter
λ random heat flux parameter
μ dynamic viscosity, N·s/m2

ν kinematic viscosity, m2/s
ρ eDPD number density
σ amplitude of the random force
Ω temperature dependent weight function

Subscripts
C cold
H hot
i, j indices
ref reference

Superscripts
C conservative
D dissipative
R random
cond conduction
visc viscous
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