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In this paper, the characteristic variational multiscale (C-VMS) method is proposed to solve the nonstationary
conduction–convection problems. The stability analysis is carried out using the energy estimate method.
Compared with the standard variational multiscale (VMS) method, the C-VMS method does not need nonlinear
iteration. Finally, some numerical examples are given, which show that the C-VMS method is efficient, reliable
and can save a lot of CPU time for this problem, besides, it can deal with the high Rayleigh number.

© 2015 Published by Elsevier Ltd.

1. Introduction

In this paper, we consider the following time-dependent nonlinear
conduction–convection equations with initial-boundary value problems:

ut−νΔuþ u � ∇ð Þuþ ∇p ¼ Ra jT in Ω� ð0; T1�;
∇ � u ¼ 0 in Ω� ð0; T1�;
Tt−νλΔT þ u � ∇T ¼ γ in Ω� ð0; T1�;
u x;0ð Þ ¼ u0; T x;0ð Þ ¼ T0 in Ω� 0f g;
u ¼ 0; T ¼ T0 on ∂Ω� ð0; T1�;

8>>>><
>>>>:

ð1Þ

where u = (u1(x), u2(x)) represents the velocity vector, p = p(x) the
pressure, T(x) the temperature, γ the forcing function, respectively. And

x = (x1, x2), j ¼ ð0; ; ;1ÞT ; λ ¼ 1
Pr ; ν ¼ 1

Re; Pr, Re, Ra, T1 represent
the Prandtl number, the Reynolds number, the Rayleigh number, and
the given final time, respectively.

Conduction–convection problems are the same as natural convec-
tion problems whose control equations are composed of continuity
equation, momentum equation, and energy equation. They constitute
an important dissipative nonlinear equation in atmospheric dynamics.
This is a hot topic in the heat transmission science for a long time, be-
cause it has been widely used in many fields of production and life.
And the nonstationary conduction–convection problems are much
more difficult than the stationary conduction–convection problems no
matter if physical point of view or computation. Therefore, it is signifi-
cant to study the problemand so far,many scholars have carried out im-
portant extensive research work.

In recent years, many scholars devoted a huge amount of research to-
wards the development of these problems that can be found in literatures
([1,2,4,16,7] and the references therein). Boland and Layton [1] gave some
numerical analyses and numerical results for the non-stationary natural
convection equations. Luo andhis collaborators offered lowest orderfinite
difference scheme based onmixed finite elementmethod (FEM) for non-
stationary natural convection problem in [2]; what's more, they gave an
optimizing reduced Petrov–Galerkin least squares mixed FEM combined
with proper orthogonal decomposition method for non-stationary con-
duction–convection problems in [4]. In addition, Si and his collaborators
[16] formulated the modified characteristic Gauge–Uzawa FEM for time
dependent conduction–convection problems. And Trouette carried on
the numerical simulation of Lattice Boltzmann method for time-
dependent natural convection problem.

As is known, VMS methods which were firstly posed by Hughes in
[8,9] are based on the decomposition of the flow scales and define the
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large scales by projection into appropriate subspaces. Then John et al.
[10,11], Kaya and Rivière [12], Masud and Khurram [13], and Zheng
et al. [14] studied and developed VMS methods. The characteristic
methods have proved their efficiency for many physical problems, es-
pecially for convection-dominated problems (see Ref. [3]). A new VMS
method is presented for steady-state natural convection problem with
bubble stabilized FEM in [18]. In this paper, we shall use the C-VMS
method to solve the nonstationary conduction–convection problems.
The C-VMSmethod is derived fromVMSmethod and the characteristics
method,which is a highly effectivemethod for time dependent conduc-
tion–convection problems and time dependent Navier–Stokes prob-
lems. Compared with VMS method which needs two iterations at
least using Newton iterative at the same time layer, the C-VMS method
does not need nonlinear iterationwith the same accuracy. So the C-VMS
method can save a lot of CPU time. Importantly, the C-VMSmethod can
be used for the high Rayleigh number and the high Reynolds number.

The remainder of this paper is organized as follows. In Section 2,
we will introduce some notations and give some preliminaries for
problem (1). Then we present the C-VMS method for solving the
time-dependent nonlinear conduction–convection problems in
Section 3, and Section 4 is given stability analysis of the new scheme.
Some numerical experiments conforming the theoretical results are
provided in Section 5. Finally, conclusions are drawn in Section 6.

2. Preliminaries

For the mathematical setting of problem (1), we introduce the
standard Hilbert spaces, finite element spaces and some notations.

X ¼ H1
0 Ωð Þ2; W ¼ H1 Ωð Þ; W0 ¼ H1

0 Ωð Þ;
Q ¼ L20 Ωð Þ ¼ fq∈L2 Ωð Þ :

Z
Ω

q d x ¼ 0g;

V ¼ H1
0;div Ωð Þ2 ¼ u∈X;∇ � u ¼ 0 in Ωf g:

Here and below, the space L2(Ω) is equipped with the L2-scalar
product (⋅,⋅) and L2-norm ‖ ⋅ ‖0. Further, we will consider the standard
definitions for Sobolev spaces Wm,p(Ω) equipped with the norm
‖ ⋅ ‖m,p and semi-norm j � j

m;p
, m, p ≥ 0. Note that

�k km ¼ �k km;2; �j jm ¼ �j jm;2:

Then theweak formulation of Eq. (1) reads: seek (u, p, T) ∈X×Q×W
for all t ∈ (0, T1] such that for all (v, q, s) ∈ V × Q ×W0 and T|∂Ω = T0,

ut ; vð Þ þ B u; pð Þ; v; qð Þð Þ þ c u;u; vð Þ ¼ Ra jT; vð Þ;
Tt ; sð Þ þ a T ; sð Þ þ c u; T; sð Þ ¼ γ; sð Þ;
u x;0ð Þ ¼ u0; T x;0ð Þ ¼ T0;

8<
: ð2Þ

where

a u; vð Þ ¼ ν ∇u;∇vð Þ; b v;pð Þ ¼ q;∇ � vð Þ; a T ; sð Þ ¼ λν ∇T ;∇sð Þ;
c u; v;wð Þ ¼ u � ∇ð Þv;wð Þ þ 1

2
∇ � uð Þw; vð Þ ¼ 1

2
u � ∇ð Þv;wð Þ−1

2
u � ∇ð Þw; vð Þ;

c u; T ; sð Þ ¼ u � ∇ð ÞT ; sð Þ þ 1
2

∇ � uð ÞT ; sð Þ ¼ 1
2

u � ∇ð ÞT ; sð Þ−1
2

u � ∇ð Þs; Tð Þ;
B u;pð Þ; v; qð Þð Þ ¼ a u; vð Þ−b v;pð Þ þ b u; qð Þ:

Notes: with the above notations, there are the following estimates.
(A1). The bilinear form b(⋅,⋅) satisfies the inf-sup condition

sup
v∈X

b v; qð Þ
∇vk k0

≥β qk k0; ∀ q∈Q ;

where β is a positive constant depending on Ω.
(A2). As is known, the above trilinear forms c(⋅;⋅,⋅) and cð�; �; �Þ have

the following properties:

c u;w; vð Þ ¼ −c u; v;wð Þ;
c u; v;wð Þj≤N∥∇u∥0∥∇v∥0∥∇w∥0; ∀u; v;w∈X;j ð3Þ

and

c u; T; sð Þ ¼ −c u; s; Tð Þ;
cj u; T; sð Þ ≤N ∇uk k0 ∇Tk k0 ∇sk k0; ∀ u; T ; sð Þ∈ X;W;Wð Þ;

�� ð4Þ

where

N ¼ sup
u;v;w∈X

c u; v;wð Þj j
∇uk k0 ∇vk k0 ∇wk k0

;N ¼ sup
u∈X;T;s∈W

c u; T; sð Þj j
∇uk k0 ∇Tk k0 ∇sk k0

:

(A3). The generalized bilinear form satisfies the continuity property
and inf-sup condition [15]:

jB u; pð Þ; v; qð Þð Þj≤c ∥∇u∥0 þ ∥p∥0ð Þ ∥∇v∥0 þ ∥q∥0ð Þ;∀ u;pð Þ; v; qð Þ∈ X;Qð Þ;

Table 1
The convergence rates of C-VMS method with Δt = h2.

1/h ∥∇ðu−uhÞ∥0
∥∇u∥0

∥p−ph∥0
∥p∥0

∥∇ðT−ThÞ∥0
∥∇T∥0

Kdiv CPU-time

10 2.8742E − 2 1.0000E − 2 1.7266E − 2 3.9433E − 3 2.37
20 7.3237E − 3 2.5001E − 3 4.3847E − 3 9.7962E − 4 28.52
30 3.2682E − 3 1.1111E − 3 1.9548E − 3 4.3398E − 4 137.62
40 1.8413E − 3 6.2507E − 4 1.1008E − 3 2.4360E − 4 437.33
50 1.1796E − 3 4.0011E − 4 7.0487E − 4 1.5570E − 4 1088.87
60 8.1988E − 4 2.7794E − 4 4.8963E − 4 1.0803E − 4 2211.15
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Fig. 1. Log–log errors of the velocity, pressure and temperature.

Table 2
The convergence rates of C-VMS method with Δt = 0.0001.

1/h ∥∇ðu−uh Þ∥0
∥∇u∥0

∥p−ph∥0
∥p∥0

∥∇ðT−Th Þ∥0
∥∇T∥0

Kdiv CPU-time

70 6.0194E − 4 2.0408E − 4 3.5979E − 4 7.9725E − 5 855.38
80 4.6093E − 3 1.5625E − 4 2.7550E − 4 6.1015E − 5 1136.88
90 3.6423E − 4 1.2345E − 4 2.1769E − 4 4.8194E − 5 1485.9
100 2.9505E − 4 9.9999E − 5 1.7634E − 4 3.9029E − 5 2140.78
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