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A hybrid model, coupling a finite difference method with a multiple-relaxation-time lattice Boltzmann method,
integrating continuum surface force model and phase-field method, for axisymmetric two-phase
thermocapillary flowwith a deformable interface is developed. Thermocapillary flow, originating from an unbal-
anced surface tension along the interface of two immiscible liquids in an annular cavitywith a horizontal temper-
ature gradient, is simulated numerically. The dynamic behavior of the interface is captured using the phase-field
method, and no a priori assumption is made regarding the interface shape and deformation. The continuum
surface force model is adopted to add the unbalanced surface tension. The flow field is simulated by multiple-
relaxation-time lattice Boltzmann method and both phase-field equation and the energy equation are solved
by finite difference method. The dependence of fluid convection and interface deformation on the ratio of phys-
ical properties between the two liquid layers is investigated.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Thermocapillary flow appears in numerous engineering applications
with two immiscible liquid layers, for instance, the liquid encapsulation
Czochralski (LEC) crystal growth technique [1,2] and floating zone crys-
tal growth [3,4] under microgravity, where the thermocapillary flow
dominates convection and therefore heat and mass transfer of the
melt. A liquid encapsulant added on melt surface in the LEC growth
technique, and the thermocapillary flow in LEC system, is generally
much more complicated than in the unencapsulated crystal growth
system.

Doi et al. [5] studied theoretically the thermocapillary flow in two
immiscible liquids; the flow pattern and the conditions to reduce the
flow intensity of the lower layer liquidwere investigated. Subsequently,
Liu et al. [6] simulated thermocapillary flow with a fixed flat interface
assumption and a liquid encapsulation was applied to suppress
thermocapillary flowundermicrogravity. Gupta et al. [7] adopted thefi-
nite difference method and domain mapping technique to solve the
temperature field and flow field; an effective single-layer model, ap-
proximating the flow within the encapsulated layer, was developed.
By using a two-dimensional axisymmetric liquid column model, Saghir

et al. [8] estimated quantitatively the velocities of thermocapillary flow
in three samples of InBi encapsulated in three organic liquids (glycerin,
silicone oil, and Krytox). Using a linear perturbative analysis, Madruga
et al. [9] studied theoretically the stability of two superposed horizontal
liquid layers bounded by two solid planes and subjected to a horizontal
temperature gradient, and the existence of three kinds of flow patterns
was revealed. Li et al. [10] obtained the asymptotic solution of
thermocapillary flow with two-dimensional model for two immiscible
liquids with a non-deformable interface in an annular cavity. Someya
et al. [11] observed the velocity fieldwith interfacialMarangoni convec-
tion by using the particle image velocimetry technique. Koster et al. [12]
pointed out that a more detailed investigation on thermocapillary flow
in multi-layer fluid system, including the interface deformation, should
be considered from the experimental view. However, in these early
studies, the dynamical interface deformation is seldom considered in
thermocapillary flows because of the unknown interface shape, and
the coupling between the interface shape and the convection driving
force, i.e. the unbalanced surface tension. In this paper, the technique in-
tegrating the phase-field method and continuum surface force (CSF)
model is applied to challenge the dynamical interface deformation orig-
inating from the unbalanced surface tension driving flow.

So far, lattice Boltzmann method (LBM) has been widely developed
to simulate the multiphase flow, and many computational advantages,
including easy parallelization and boundary treatment, are exhibited
in LBM. The axisymmetric LBMmodel, incorporating the spatial and ve-
locity dependent source terms into evolution equation to recover N-S
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equations in cylindrical coordinate, was proposed by Halliday et al. [13].
Subsequently, some modified models, following Halliday's procedure,
were developed [14–16]. Zhou [17] introduced a centered scheme for
the source terms to simplify the axisymmetric LBMmodel. The theoret-
ical differences for these LBM axisymmetric models had been discussed
in [18] and numerical simulations were also carried out to investigate
the accuracy of thesemodels. Chen et al. [19] developed an axisymmet-
ric LBM model from the vorticity-stream equations. Based on the con-
tinuous Boltzmann equation in cylindrical coordinates, Guo et al. [20]
proposed another approach of axisymmetric kinetic LBM model, in
which the gradientwas eliminated in source terms. Li et al. [21] present-
ed an improved LBM model with a simplified source term to eliminate
velocity gradient for incompressible axisymmetric flows. Recently, the
axisymmetric LBM models were widely developed for two-phase
flows. The collision of two axisymmetric drops was simulated with
two-phase LBM model in [22].The drop spreading on a dry surface
was investigated by an axisymmetric two-phase LBM model in [23].
The classical Shen-Chen two-phase model [24] was also extended to
axisymmetric flows [25]. Liang et al. [26] developed a phase-field-
based two distribution functions LBM model for axisymmetric two-
phase isothermal flow.

In this paper, a computational strategy coupling multiple-
relaxation-time (MRT) LBM and finite difference method (FDM) is
adopted; the technique integrating the phase-field method and contin-
uum surface force (CSF) model is applied to implement the unbalanced
surface tension on interface and also track the interface dynamical de-
formation. The axisymmetric LBM model for the two liquid layers is
referred to the works [23,25,27], where Huang developed a phase-
field-based hybrid LBM model for simulating axisymmetric isothermal
two-phase flow. Thermocapillary flow with deformable interface in an
annular pool is simulated, and the influence of the ratio of physical
properties on the flow pattern and deformation of the liquid–liquid
interface is investigated.

2. Numerical method

In this section, three basic parts of our hybrid two-phase LBM
approach for thermocapillary flow with dynamical interface are
introduced.

2.1. Axisymmetric LBM for fluids

In LBM, fα(x, t) is defined as a particle distribution function at posi-
tion x(r, z), time t with velocity eα. The evolution equation for fα(x, t)
with a single relaxation time collision model is

f α x þ eαδt ; t þ δtð Þ− f α x; tð Þ ¼ −
1
τ

f α x; tð Þ− f eqα x; tð Þ� � ð1Þ

where f α
eq(x, t) is the equilibrium distribution function. τ is the single

relaxation time and relate to the kinematic viscosity ν. In a two-dimen-
sional nine-velocity (D2Q9) model, the eα is

eα ¼
0; 0ð Þ; α ¼ 0
cos α−1ð Þπ=2½ �; sin α−1ð Þπ=2½ �ð Þc; α ¼ 1−4
cos 2α−9ð Þπ=4½ �; sin 2α−9ð Þπ=4½ �ð Þ
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2
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where c= δx/δt is the lattice velocity. The equilibrium distribution func-
tion f α

eq(x, t) in [28,29] is adopted as

f eqα ¼ ωα pþ ρc2s
eα � u
c2s

þ eα � uð Þ2
2c4s

−
u2

2c2s

 !" #
; ð3Þ

where cs
2 = c/3, and the weight coefficients are

ωα ¼
4=9; α ¼ 0
1=9; α ¼ 1;2;3;4 :
1=36; α ¼ 5;6;7;8

8<
: ð4Þ

Next, the external force terms are added directly in the right hand
side of the evolution Eq. (1)

f α x þ eαδt ; t þ δtð Þ− f α x; tð Þ ¼ −
1
τ

f α x; tð Þ− f eqα x; tð Þ� �
þ 1−

1
τ
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� �
Γα

� �
−ωα F0;axis
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where F0,axis is a source term to account for the axisymmetric effect in
the continuity equation, and F1,axis is the parts to mimic the axisymmet-
ric contribution for the momentum equation:

F0;axis ¼ c2s
ρur
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Γα is defined as

Γα ¼ ωα 1þ eα � u
c2s

þ eα � uð Þ2
2c4s

−
u2

2c2s

 !
: ð7Þ

Because of the drawback of the instability at low viscosity values in
the single relaxation time LBMmodel, an MRT collision model, improv-
ing the numerical stability, was proposed by D'Humières [30].
Lallemand and Luo [31] further developed this model. Premnath [32]
derived the continuum equations for multiphase flow from the MRT
model through a Chapman–Enskog analysis and demonstrated the
computational advantages of the MRT model for multiphase flows.

Nomenclature

fα Density distribution function
feq Equilibrium distribution function
mα Moment
meq Equilibriummoment
eα Discrete particle speeds
sα Relaxation rates
cp Heat capacity
u Velocities
p Pressure
T Temperature
n Interface normal
k Interface curvature
Re Reynolds number
Ma Marangoni number
Ca Capillary number

Greeks
σ Surface tension
φ Order parameter
κ Thermal conductivity
ν Kinematic viscosity
ρ Density

Subscripts/Superscripts
α Discrete speed directions (α = 0,…,8)
eq Equilibrium
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