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An exact analytical description of the internal radiative field inside an emitting-absorbing grey semi-transparent
medium enclosed in a two-dimensional parallelogram cavity is proposed. The expressions of the incident radia-
tion and the radiative flux field are angularly and spatially discretized with a double Gauss quadrature, and the
temperature field is obtained by using an iterative process. Some numerical solutions are tabulated and graphi-
cally presented as the benchmark solutions. Temperature and two components of the radiative flux are finally
sketched on the whole domain. It is shown that the proposed method gives perfectly smooth results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Radiative effects are important in a large class of coupled thermal
problems. This has led to the development of several numerical tech-
niques to solve the radiative transfer equation in complex geometries.
The particular case of the parallelogram shaped cavity has some inter-
esting applications in buildings and solar energy systems [1]. Natural
convection studies [2–4] have been conducted in such geometries and
have shown the influence of the angle between adjacent boundaries
on the flow pattern and heat transfer. Magnetic effects on the convec-
tion have also been studied and large modification of the flow structure
has been observed [5]. The effect of radiative transfer due to emitting-
reflecting surfaces has been considered by using the radiosity technique
[6]. Baïri et al. [6] note that in such a cavity, the presence of radiation
incoming from the surfaces strongly affects the natural convection
and may reduce it substantially for particular angles. To the best of our
knowledge, radiative transfer when the medium in the cavity is
participating has not been reported yet. The main goal of this paper is
therefore to present accurate benchmark results which can be used to
validate the results obtained by numerical methods. In the present
paper we completely describe the radiative field inside a semi-
transparent medium bounded by a parallelogram shaped cavity in a
partially analytic way by keeping a hybrid formulation combining
space and angular integrals as in Ref. [7]. The numerical treatment
combines a discretization of the useful integrals and an iterative scheme
to compute the temperature field at radiative equilibrium.

In the following, we first develop in Section 2 the exact expressions
of the radiative source and flux filed when using a hybrid formulation
combining spatial and angular integrals. We then describe the angular

and spatial discretizations of the useful integrals. Finally we present
some numerical results in Section 3 and end this work by a short
conclusion.

2. Mathematical formulation

One considers an infinite parallelepiped with a parallelogram
section, filled with an absorbing-emitting but non scattering semi-
transparent greymedium, of absorption coefficient κ and unit refractive
index at radiative equilibrium. The boundary surfaces are assumed iso-
thermal with imposed temperatures and black for sake of simplicity,
while the optical constants of the grey medium are not depending on
the internal temperature field. The parallelogram section is divided
into Nx × Ny isothermal parallelogram cells of equal lengths Δx ¼ Hx

Nx

and Δy ¼ Hy

Ny
, where Hx and Hy are the two characteristic lengths

of the parallelogram section, each of one labelled (i, j), with (i, j) ∈
{1,…, Nx} × {1,…, Ny}. The only considered energy transfer is radiation,
whence the internal temperature field inside the parallelepiped is
determined from the radiative equilibrium condition. The incident
radiation and the radiative flux at a given internal point are given by:

G ¼
Z

Ω¼4π

Ii j Ω
!� �

dΩ

qr
!¼

Z
Ω¼4π

Ii j Ω
!� �

Ω
!
dΩ

ð1Þ

Ii jðΩ⃗Þ is the radiative intensity at the centre Mij of the cell labelled (i, j)

for a given direction of propagation Ω⃗. For semi-transparent greymedia
with a constant unit refractive index, the radiative source is simply the
divergence of the radiative flux, expressed by:

S ¼ κ 4σT4−G
� �

: ð2Þ

International Communications in Heat and Mass Transfer 68 (2015) 137–149

☆ Communicated by Dr. W.J. Minkowycz.
⁎ Corresponding author.

E-mail address: hamou.sadat@univ-poitiers.fr (H. Sadat).

http://dx.doi.org/10.1016/j.icheatmasstransfer.2015.08.028
0735-1933/© 2015 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

International Communications in Heat and Mass Transfer

j ourna l homepage: www.e lsev ie r .com/ locate / ichmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.icheatmasstransfer.2015.08.028&domain=pdf
http://dx.doi.org/10.1016/j.icheatmasstransfer.2015.08.028
hamou.sadat@univ-poitiers.fr
http://dx.doi.org/10.1016/j.icheatmasstransfer.2015.08.028
http://www.sciencedirect.com/science/journal/07351933
www.elsevier.com/locate/ichmt


The temperature field at radiative equilibrium is then deduced from
the incident radiation field.

Let us consider ðe!x ; e!y Þ the orthogonal basis of the parallelogram sec-

tion, and e!z the unit vector orthogonal to ðe!x ; e!y Þ. We note φ the angle
between the projection of a luminous ray on the parallelogram section
and the unit vector e!x , as illustrated in Fig. 1, while θ denotes the
angle between the luminous ray and the unit vector e!z perpendicular
to the figure's plane.

Since the parallelepiped is infinite in the e!z direction, the tempera-
ture field so as the radiative field do not depend on the z coordinate,

and the contribution for angles θ ∈ ½0; π2� is strictly equivalent to the
one for angles θ ∈ ½π2 ; π�, whence the incident radiation writes in these
conditions:

G ¼
Z π

θ¼0

Z 2π

φ¼0
Ii j θ;φð Þ sin θ dθ dφ ¼ 2

Z π
2

θ¼0

Z 2π

φ¼0
Ii j θ;φð Þ sin θ dθ dφ: ð3Þ

Wedefine four angular sectors in theplaneðe!x ; e!y Þ from thepointMij

delimiting the radiative contributions originating from the cavity's sur-
faces. In Eq. (3) the angleφ is the natural angle defining the propagation

direction Ω⃗¼ ð
cosφ sin θ
sinφ sin θ

cos θ
Þ in the natural basis ðe!x ; e!y ; e!z Þ , passing

through a given pointMij. Thismeans for example that given a particular
angle φ ∈ [0, φE

+] where the geometrical angular sector aperture φE
+ is

represented in Fig. 1, the radiation incoming at pointMij for this direc-
tion is originating from the southern surface and reaches the eastern
surface, and is not coming from the eastern one. Similarly, given an
angle φ ∈ [2π − φE

−, 2π] ≡ [−φE
−, 0], where the absolute value angular

aperture φE
− is shown in Fig. 1, the incoming radiation is originating

from the northern surface. We shall therefore use a ray tracing process

Fig. 1. Geometry of the parallelogrammic cavity.

Nomenclature

Bisn, Cisn, Altaç angular integrated Bickley–Naylor functions
ðex ⃗ ; ey ⃗ ; ez ⃗ Þunit vectors of the x, y, z directions
G volumic incident radiation (Wm−3)
Hx length of the cavity sides along the x direction (m)
Hy length of the cavity sides along the y direction (m)
(i, j) internal cells numbering
Ii jðΩ ⃗ Þ intensity at the (i, j) cell centre (Wm−2Sr−1)
Kin Bickley–Naylor functions
Nx cells number on the sides parallel to the x direction
Ny cells number on the sides parallel to the y direction
q⃗
r
i j radiative flux vector at the (i, j) cell centre (Wm−2)

qx x-component of the radiative flux (Wm−2)
qy y-component of the radiative flux (Wm−2)
S volumic radiative source (Wm−3)
T temperature (K)
x, y, z coordinate axis directions

Greek letters
Δx characteristic cell length along the x direction (m)
Δy characteristic cell length along the y direction (m)
κ absorption coefficient (m−1)
σ Stephan–Boltzmann constant (5.6710−8 Wm−2 K−4)
τ optical depth
φ, θ angular description of the unit vector Ω⃗
Ω⃗ unit vector of radiation propagation

Subscripts (superscripts)
E, N, O, S east, north, west and south

Fig. 2.Determination of thegeometrical elements for radiation incoming from thenorthern
part of the eastern boundary.

Fig. 3.Determination of thegeometrical elements for radiation incoming from the southern
part of the eastern boundary.
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