Journal of Energy Chemistry xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Journal of Energy Chemistry

journal homepage: www.elsevier.com/locate/jechem

http://www.journals.elsevier.com/ journal-of-energy-chemistry.

N-doped NaTaO₃ synthesized from a hydrothermal method for photocatalytic water splitting under visible light irradiation

Che-Chia Hu*, Hui-Hsin Huang, Yu-Chi Huang

Department of Chemical Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan City 32023

ARTICLE INFO

Article history: Received 9 September 2016 Revised 15 November 2016 Accepted 5 December 2016 Available online xxx

ABSTRACT

NaTaO_{3-x}N_x catalysts were synthesized by a hydrothermal (H) and a solid-state (S) method in this study. The H- and S-NaTaO_{3-x}N_x samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible (UV-vis) diffuse reflectance spectroscopy, and photoluminescence (PL) spectroscopy. The XRD patterns of the H- and S-samples showed peaks indexed to the pure phase of perovskite NaTaO₃ and minor peaks assignable to Ta₃N₅ at various synthesis temperatures. Substitution of oxygen by nitrogen ions causes the light absorption of the H- and S-NaTaO_{3-x}N_x samples to be extended to the 600–650 nm region, thus making the samples visible-light active. The NaTaO_{3-x}N_x samples exhibited photocatalytic activity for H₂ and O₂ evolution from aqueous methanol and silver nitrate solutions under visible-light irradiation. The UV-vis and PL spectra of the H- and S-catalysts revealed the presence of cationic vacancies and reduced metallic species, which acted as recombination centers. These results demonstrated that the preparation method plays a critical role in the formation of defect states, thereby governing the photocatalytic activity of the NaTaO_{3-x}N_x catalysts.

© 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.

1. Introduction

7

11

12

13

14

15

16

17

18

19

In the past few decades, the photocatalytic decomposition of water has emerged as a promising technique to produce H2 and O₂ as fuels for sustainable energy [1-7]. In 1972, Honda and Fujishima first explored photocatalysis using TiO2 and Pt as photoelectrodes under UV light irradiation [8]. Since then, considerable research has been devoted to the development of photocatalysts with unique semiconducting properties, such as, TiO₂ [9,10], SrTiO₃ [11,12], $K_4Nb_6O_{17}$ [13], and $NaTaO_3$ [14–17]. In the late 1990 s, Kudo et al. reported that NaTaO3, which has a wide band gap of 4.0 eV, shows outstanding photocatalytic activity for the production of H₂ and O2 in a stoichiometric ratio of 2:1, upon NiO loading and doping with La ions [18]. The photocatalytic performance of NaTaO3 is significantly influenced by its crystalline structure, i.e., monoclinic and orthorhombic phases [19]. In the monoclinic structure, the photo-excited electron and holes separated efficiently because of the cubic-like Ta-O-Ta bond linkage, thus improving its photocatalytic activity [20]. On the other hand, NaTaO3 was activated only in the UV region (< 300 nm) because of its large band gap, thereby limiting its practical application in photocatalysis.

hybridization for altering the band gap energy [28,29]. Nitrides and oxynitrides such as tantalum oxynitride (TaON) [30-32] and tantalum nitride (Ta₃N₅) [33-36] have attracted considerable attention as visible-light-active photocatalysts. TaON and Ta₃N₅ were prepared by nitriding Ta₂O₅ under NH₃ flow at 1123 K for 15 h; the quantum efficiency of TaON and Ta₃N₅ for water splitting was up to 34% and 10%, respectively [37]. Schmuki et al. reported that Nadoped Ta₃N₅ has a smaller band gap and shows a higher photoelectrochemical current response than does pure Ta₃N₅ [38]. Recently, Yao prepared N-doped TaOxNv by the sol-gel method and successfully reduced its band gap, so that light absorption could be extended to the visible region [39]. They also found that the N doping level and reduced Ta4+ species in TaOxNy would affect its photocatalytic activity. N doping introduces localized N 2p states above the valence band, which is responsible for the red shift of the absorption; on the other hand, Ta⁴⁺ defects act as donor

states and the electrons in these states are excited to the conduc-

tion band for the photocatalytic reaction [39]. Oxynitride solid so-

lutions, $Na_xLa_{1-x}TaO_{1+2x}N_{2-2x}$, were synthesized by ammonolysis

Several efforts have been made to improve the light absorption efficiency of Ta-based compounds [21–27]. Among the syn-

thesis methods to obtain these Ta derivatives, the simplest route

is calcination under ammonia atmosphere via a solid-state reac-

tion. Ammonolysis at high temperature is a facile method to sub-

stitute O ions with N ions and thereby induce an extensive O/N

http://dx.doi.org/10.1016/j.jechem.2016.12.002

2095-4956/© 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.

Please cite this article as: C.-C. Hu et al., N-doped NaTaO₃ synthesized from a hydrothermal method for photocatalytic water splitting under visible light irradiation, Journal of Energy Chemistry (2016), http://dx.doi.org/10.1016/j.jechem.2016.12.002

Q1 02

27

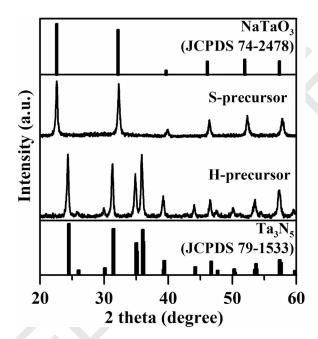
37

43 44

^{*} Corresponding author. E-mail address: chechiahu@cycu.edu.tw (C.-C. Hu).

under NH_3 atmosphere at 1273 K, which showed photocatalytic activity for both H_2 and O_2 evolution under visible-light irradiation in the presence of sacrificial reagents [40]. Moreover, a series of perovskite and Ruddlesden-Popper tantalum oxynitrides such as $SrTaO_2N$, $BaTaO_2N$, Sr_2TaO_3N , and Ba_2TaO_3N , have been reported [41–46]. These studies support the fact that O/N disorder is thermodynamically favored in perovskite-structured materials at high temperature.

Nitrogen-doped NaTaO₃, with a cubic morphology and high crystallinity, has been synthesized using a hydrothermal method [47,48]. Under UV and visible light irradiation, the photocurrent density of the N-doped NaTaO₃ improved significantly compared to that of the undoped NaTaO₃. The visible light response originated from the introduction of nitrogen, which formed hybridized N 2p and O 2p states. These localized states with the higher energy level in the band gap give rise to an additional shoulder in absorption spectrum, which is responsible for the enhancement in photocatalytic activity [49,50]. Although nitridation is a favorable approach to prepare oxynitride and nitride photocatalysts, there are only a few reports on the synthesis of nitrogen-doped NaTaO₃. Thus far, the chemical properties, photocatalysis, and photoluminescence performances of the nitrogen-doped NaTaO₃ catalyst synthesized by the hydrothermal methods remain elusive.


In this study, a visible-light-driven nitrogen-doped $NaTaO_3$ is successfully prepared by the hydrothermal method. The catalyst exhibits photocatalytic activity for H_2 and O_2 production in the presence of sacrificial reagents, under visible light irradiation. The crystalline structure, optical properties, and photoluminescence (PL) mechanism of the visible-light-active $NaTaO_{3-x}N_x$ are examined to guide the development of an efficient catalyst for the photocatalytic splitting of water under visible-light irradiation.

2. Experimental

NaTaO $_{3-x}$ N $_x$ photocatalysts were prepared by the hydrothermal and solid-state methods. In the hydrothermal synthesis, the precursor Ta $_3$ N $_5$ (referred to as H-precursor), was prepared by the nitridation of commercial Ta $_2$ O $_5$ powder at 850 °C under NH $_3$ flow (at a flow rate of 10 mL/min) for 15 h. Then, the H-precursor was suspended in 10 M NaOH solution and stirred at room temperature. A reddish powder was obtained after autoclaving the as-prepared solution at 200 °C or 240 °C for 6 and 24 h, followed by filtration and drying at 60 °C for 24 h. Hereinafter, the samples thus obtained will be designated as H20-6, H24-6, H20-24, and H24-24, in which 20 and 24 indicate the temperatures of 200 °C and 240 °C, and 6 and 24 refer to the reaction time.

For the solid-state synthesis of $NaTaO_{3-x}N_x$, the precursor $NaTaO_3$ (referred to as S-precursor) was first prepared by the previously reported sol-gel method [20]. The sol-gel synthesized $NaTaO_3$ was subjected to calcination in a tubular furnace under NH_3 atmosphere at $825^{\circ}C$ or $850^{\circ}C$ for 5, 10, and 20 h. The resulting powders were washed several times with deionized water and dried at $60^{\circ}C$ for 24 h. Hereinafter, the products obtained will be referred to as 8825-5, 8850-10, and 8850-20, in which 825 and 850 indicate the calcination temperature, and 5, 10, and 20 refer to the reaction time.

The crystalline structures of these samples were determined by powder X-ray diffractometry (XRD, Rigaku RINT 2100, Japan) with Cu K α radiation (λ = 1.5418 Å) at 40 kV and 40 mA. The XRD patterns were collected at a step interval of 0.01° and a scan rate of 4 min⁻¹ in the 2 θ range of 20–70°. The surface morphology and microstructure were examined using scanning electron microscopy (SEM; JEOL JSM-6700F, Japan) and high-resolution transmission electron microscopy (HR-TEM; FEI Tecnai, G2 F20, Philips, USA). Diffuse reflection spectra of the specimens were obtained using an ultraviolet-visible-near infrared spectrometer (Hitachi, U-

Fig. 1. Powder XRD patterns of H- and S-precursors. Standard diffraction patterns of Ta_3N_5 (JPCDS 79-1533) and $NaTaO_3$ (JCPDS 74-2478) are shown at the bottom and top of the figure, respectively.

4100, Japan) equipped with an integration sphere. These spectra were converted from reflection to absorbance using the Kubelka-Munk method [51]. The $\rm N_2$ surface area was determined with the Brunauer–Emmet–Teller (BET) equation at $-196\,^{\circ}{\rm C}$ using an adsorption apparatus (Micromeritics ASAP 2010, USA). The photoluminescence (PL) spectra of the resulting powder were measured at $-196\,^{\circ}{\rm C}$ using a fluorescence spectrophotometer (Hitachi, F-7000, Japan).

The photocatalysts were photo-deposited using nanoparticulate Pt metal as a co-catalyst. Photodeposition was performed using a 400 W high-pressure mercury lamp (SEN HL400EH-5, Japan) as the light source. The lamp spectrum was obtained using a photodetector (Oriel, model 71,964, USA) coupled with a Cornerstone 130 monochromator (Oriel) with a 10 nm bandwidth. The total photon flux, light power, and radiation flux on the reaction system were calculated. The catalyst (0.5 g) was magnetically stirred in an aqueous methanol solution (1 L, 20 vol%) containing 6.64 mg of $\rm H_2PtCl_6 \cdot 6H_2O$ (Alfa Aesar, USA) for 3 h. The resulting Pt-deposited photocatalyst was filtered and subjected to photocatalytic reaction measurements.

The photocatalytic reactions were conducted using the photocatalysts suspended in a gas-closed inner-irradiated reaction chamber under UV light and visible light irradiation, separately. The jacket between the reaction chamber and the lamp was filled with flowing cool water and aqueous 1 M of NaNO₂ solution for UV and visible light irradiation, respectively. The light source was a 400 W high-pressure mercury lamp. In these experiments, 20 vol% of methanol and 1 M of AgNO₃ solution were used as sacrificial reagents for H₂ and O₂ productions, respectively. The quantities of the evolved H₂ and O₂ were determined using gas chromatography (Hewlett-Packard 7890, USA; molecular sieve 5A column, thermal conductivity detector, argon carrier gas).

3. Results and discussion

The XRD patterns of the H- and S-precursors, Ta_3N_5 , and $NaTaO_3$, respectively, are shown in Fig. 1. All distinct diffraction peaks were indexed to the pure phases of orthorhombic Ta_3N_5 (JCPDS 79-1533) and monoclinic $NaTaO_3$ (JCPDS 74-2478),

Download English Version:

https://daneshyari.com/en/article/6530278

Download Persian Version:

https://daneshyari.com/article/6530278

<u>Daneshyari.com</u>