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In thepresent study, a numericalmethod based on the lattice Boltzmannmethod and smoothed profilemethod is
proposed to simulate the forced and natural convection flows in complex geometries. The solid–fluid boundaries
are replaced by a smoothed continuous interface with a finite thickness. A concentration function is used to
identify the fluid and solid regions. The flow and temperature fields in different regions are solved on fixed
grids. The force term and heat source/sink are added in evolution equations to impose the velocity and temperature
boundary conditions. The present approach is validated by some thermal flows examples: flow around a heated
circular cylinder, natural convection in a square cavity with a heated circular cylinder, natural convection in a
concentric annulus. The computed results show good agreement with the previous data. The high efficiency of
the present method is also verified.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Forced and natural convection flows in complex geometries exist
widely in many engineering fields, and it is frequently investigated
numerically bymany researchers. The treatment of the complex bound-
aries is a key issue in CFD. Generally speaking, there exist two different
mesh techniques: the conforming mesh methods and non-conforming
mesh methods. The conforming mesh methods, such as body-fitted
method and unstructured method, which require meshes conforming
the interface, usually need remesh when dealing with moving bound-
aries. It may require high computational overhead. Conversely, in the
nonconforming meshmethods, the fixed grid is used and the boundary
conditions are treated as constraints on the governing equations. These
methods avoid the mesh update in numerical procedure and improve
the computational efficiency greatly.

In recent years, four different non-conformingmeshmethods are very
popular: immersed boundary method (IBM) [1,2], immersed interface
method (IIM) [3–5], distributed Lagrange multiplier/fictitious domain
method (DLM/FDM) [6,7], and smoothed profile method (SPM) [8–10].

The IBM is first introduced by Peskinwhenhe studied the blood flow
in the heart. In IBM, two types of meshes are used. A fixed Cartesian
mesh is used for the fluid and the boundary is represented by a set of

Lagrangian points. The interaction between fluid and solid is computed
in terms of distribution and interpolation operations using the smoothed
Dirac delta function. After Peskin's pioneering work on IBM, many
subsequent studies have been done to improve and extend this method.
The IIM is developed by Li and co-workers which incorporates the inter-
face jump conditions into finite difference schemes [3–5]. Compared
with the IBM, IIM has higher accuracy. In IIM, the boundary force is
used to construct the interface jump conditions in the pressure and the
derivatives of the velocity. The DLM/FDM was firstly proposed by
Glowinski to study the incompressible particulate flows [6,7]. The main
features of DLM/FDM are that the governing equations are discretized
in space on an extended domain, and the boundary conditions on the
original domain can be enforced by using the Lagrange multiplier
approach.

Smoothed profilemethod (SPM) is another efficient non-conforming
mesh method. Nakayama and Yamamoto had done an initial work on
SPM [8]. In contrast to the above methods, the solid–fluid boundaries
are replacedwith a continuous interface by assuminga smoothed profile
in SPM. And a concentration function is introduced to describe the flow
and solid regions. The effect of this concentration function is similar to
the level set function in level set method [11]. Different from the
above non-conforming mesh methods, SPM does not need to use the
marker points to represent the inner boundary of the solid region and
all calculations are implemented on the Eulerian nodes. So it avoids
the computational cost of interpolations and distributions operations.
As same as the other non-conforming mesh methods, an external force
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term is added to impose the solid–fluid impermeability condition.
Nakayama and Yamamoto have applied SPM successfully to simulate
colloidal dispersions system and investigate the electrohydrodynamic
effects [8,12]. After the initial work of Nakayama and Yamamoto,
many related studies have been carried out. Luo et al. proposed a
high-order semi-implicit SPM and analyzed its numerical error [9].
Then Luo and Suk extended their method to resolve the electrokinetic
flows [13]. Kang et al. proposed a so-called one-stage SPM to simulate
the suspended paramagnetic particulate flows [14].

It is noteworthy that the lattice Boltzmann method (LBM) has
received many attentions in recent years due to its high efficiency.
Different from conventional fluid solver based on Navier–Stokes
equations, LBM is derived from kinetic theory [15]. In LBM, an algebraic
equation is solved on a uniform Cartesian grid. Via simple streaming and
collision steps, the complex fluid systems can be simulated. LBM has
been applied in multicomponent and multiphase flows [16], micro-
flows [17], turbulent flows [18] and fluid–solid interactions [19–22].
LBM has also been used to investigate the forced and natural convection
flows in complex geometries [23–34]. The computational approach
coupled LBM and non-conforming mesh methods have been studied by
many scholars. Feng and Michaelides proposed an immersed boundary-
lattice Boltzmannmethod (IB-LBM) for solving fluid-particles interaction
problems [35]. Shi andPhan-Thien considered a coupling algorithmbased
on DLM/FDM and LBM to deal with the fluid/elastic–solid interactions
[36]. Jafari et al. presented a numerical scheme which couples the LBM
and SPM and they successfully simulated particulate suspensions using
this method [10].

In this paper, our purpose is to construct a thermal smoothed profile-
lattice Boltzmann method (SP-LBM) to simulate the forced and natural
convection flows in complex geometries. Although SPM is a very high
efficiency method, to best of our knowledge, there are not any works to
study the thermal flows using this method. In the present method, the
double-distribution-function lattice Boltzmann method is employed. A
heat source/sink is introduced to enforce the temperature boundary
condition. Clearly, the present thermal SP-LBM still keeps the advantage
of the high efficiency. Some forced and natural convection problems are
simulated to validate the present method.

2. Numerical schemes

2.1. Fluid and temperature fields solver

In our study, the double-distribution-function lattice Boltzmann
method is chosen as fluid and temperature fields solver. It is an efficient

alternative techniqueof theNavier–Stokes solver. The passive-scalar ther-
mal model which is proposed by Shan is used to handle the temperature
field [37]. The evolution equations of double-population LBMwith source
term can be written as

f α x þ eαΔt; t þ Δtð Þ− f α x; tð Þ ¼ − 1
τ f

f α x; tð Þ− f eqα x; tð Þ� �þ FαΔt; ð1Þ

gα x þ eαΔt; t þ Δtð Þ−gα x; tð Þ ¼ − 1
τg

gα x; tð Þ−geqα x; tð Þ� �þ GαΔt; ð2Þ

where fα(x, t), gα(x, t) denote the density and temperature distribution
functions for the discrete velocity eα, Δt is the time step, and τf, τg
are the dimensionless relaxation times of flow and thermal fields,
respectively. Fα, Gα are discrete force and heat source/sink terms
which are defined in the following section.

In the lattice models, the local equilibrium density and temperature
distribution functions f α

eqðx; tÞ, gαeqðx; tÞ are given by
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c2s
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 !
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where u is the fluid velocity, cs2 is the lattice sound speed, and ωα

is the weight coefficient which depends on the lattice velocity
model.

The D2Q9model is applied in this study, and the discrete velocity set
is defined as
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Fig. 1. The schematic of the smoothed profile (Blue line).

Fig. 2. The schematic of the rotation flow with heat transfer.
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