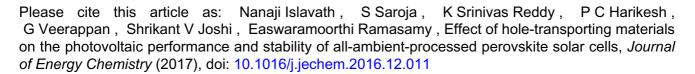
Accepted Manuscript

Effect of hole-transporting materials on the photovoltaic performance and stability of all-ambient-processed perovskite solar cells


Nanaji Islavath, S Saroja, K Srinivas Reddy, P C Harikesh, G Veerappan, Shrikant V Joshi, Easwaramoorthi Ramasamy

PII: S2095-4956(17)30139-0 DOI: 10.1016/j.jechem.2016.12.011


Reference: JECHEM 272

To appear in: Journal of Energy Chemistry

Received date: 21 August 2016 Revised date: 22 December 2016 Accepted date: 29 December 2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of hole-transporting materials on the photovoltaic performance and stability of all-ambient-processed perovskite solar cells

Nanaji Islavath, S Saroja, K Srinivas Reddy, P C Harikesh, G Veerappan, Shrikant V.

Joshi, Easwaramoorthi Ramasamy*

Centre for Solar Energy Materials, International Advanced Research Centre for Powder

Metallurgy and New Materials (ARCI), Hyderabad 500005, India

Article history:

Received 21 August 2016

Revised 22 December 2016

Accepted 29 December 2016

Available online

Abstract

High-efficiency perovskite solar cells (PSCs) reported hitherto have been mostly prepared in a moisture and oxygen-free glove-box atmosphere, which hampers upscaling and real-time performance assessment of this exciting photovoltaic technology. In this work, we have systematically studied the feasibility of all-ambient-processing of PSCs and evaluated their photovoltaic performance. It has been shown that phase-pure crystalline tetragonal MAPbI₃ perovskite films are instantly formed in ambient air at room temperature by a two-step spin coating process, undermining the need for dry atmosphere and post-annealing. All-ambient-processed **PSCs** with configuration of FTO/TiO₂/MAPbI₃/Spiro-OMeTAD/Au achieve open-circuit voltage (990 mV) and short-circuit current density (20.31 mA/cm²) comparable to those of best reported glove-box processed devices. Nevertheless, device power conversion efficiency is still constrained at 5% by the unusually low fill-factor of 0.25. Dark current-voltage characteristics reveal poor conductivity of hole-transporting layer caused by lack of oxidized spiro-OMeTAD species, resulting in high series-resistance and decreased fill-factor. The study also establishes that the above limitations can be readily overcome by employing an inorganic p-type semiconductor, copper thiocyanate, as ambient-processable hole-transporting layer to yield a fill-factor of 0.54 and a power conversion efficiency of 7.19%. The present findings can have important implications in industrially viable fabrication of large-area PSCs.

Download English Version:

https://daneshyari.com/en/article/6530357

Download Persian Version:

https://daneshyari.com/article/6530357

<u>Daneshyari.com</u>