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Entropy generation during the mixed convection process have been studied in a square enclosure for various
moving horizontal (cases 1a–1d) or vertical wall(s) (cases 2a–2c) where the bottomwall of the cavity is isother-
mally hot, side walls are cold, and the topwall is adiabatic. Simulations have been performed for Prandtl number
Pr=0.026 and 7.2, Reynolds number Re=10− 100, and Grashof numberGr=103− 105. Results show that, in
the case of the horizontally moving wall(s) (cases 1a–1d), the overall heat transfer rate ðNubÞ and total entropy
generation (Stotal) are identical for cases 1a–1d and the cup-mixing temperature (θcup) is high for case 1b at Pr=
0.026, Re=100, and Gr=105. Similarly, in the case of the vertically movingwall(s) (cases 2a–2c),Nub and Stotal
are identical for cases 2a–2cwith themaximum θcup occurring for the case 2a. At Pr=7.2,Gr=105, and Re=10,
case 1a and case 1c are preferable for horizontally moving wall(s) and either of case 2a–2c is preferable for
vertically moving wall(s). At Pr = 7.2, Gr = 105, and Re = 100, case 1d may be preferable for the horizontally
moving wall(s) and case 2a may be preferable for the vertically moving wall(s).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Analysis of the fluid flow and heat transfer for themixed convection
in the closed enclosures received considerable attention due to the
significant industrial applications such as the cooling of electronic
components [1], solar collector [2], room ventilation [3], etc. Substantial
research efforts involving the experimental as well as numerical studies
have been performed to understand the fluid flow and heat transfer
phenomena inside the enclosures for various velocity as well as thermal
boundary conditions. A number of earlier studies also focused on the
influence of the motion of various walls (horizontal or vertical) for the
transport process within the square enclosure [4–8]. However, most of
these studies are based on the first law of thermodynamics and only a
few studies have been done on the entropy generation analysis.

The recent review [9] on the entropy generation for the convection
process shows that the analysis of the entropy generation for the
mixed convection process in various geometries involving the ducts or
cavities is limited. Yilbas et al. [10] examined the effect of the protruding
body aspect ratio on the total entropy generation for themixed convec-
tion in a square cavity. Lioua et al. [11] analyzed the entropy generation
during the mixed convection in a three-dimensional cavity for various
directions of the motion of the lids. The mixed convection heat transfer

and entropy generation in a square cavitywith the discrete heat sources
at the corners was investigated by Chacon et al. [12]. Mahmoudi and
Hooman [13] investigated the effect of a discrete heat source location
on the entropy generation in a ventilated cavity filled with the
copper–water nanofluid during themixed convective cooling. However,
the role of various moving walls on the entropy generation during the
mixed convection in the square cavities with the hot bottom wall, cold
side walls, and adiabatic top wall has not yet been addressed in the
literature. Therefore, it is necessary to investigate the efficiency of the
system based on the minimal entropy generation versus the larger
heat transfer rates for variousmovingwall(s) corresponding to practical
applications involving the floating process [14], food processing [15],
etc. Overall, the entropy generation analysis in this study will help to
improve the efficiency of the system via choosing the proper physical
and thermal parameters.

2. Modeling, simulation, and post-processing

2.1. Governing equations, boundary conditions, and numerical simulations

The three-dimensional physical domains are shown in Fig. 1(a) and
(c). The two-dimensional computational domains are shown in
Fig. 1(b) and (d) based on the semi-infinite approximation along Z
direction. The fluidmotion and heating patterns are studied for two dif-
ferent cases which are as follows: case 1: horizontal wall(s) are moving
either in same or in opposite directions [Fig. 1(b)], and case 2: vertical
wall(s) are moving in either same or opposite directions [Fig. 1(c)]. In
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all the cases, the bottom wall is isothermally hot while side walls are
isothermally cooled with the adiabatic top surface. The fluid is consid-
ered as incompressible and the flow is assumed to be two-dimensional
and laminar. The Boussinesq approximation is employed to relate
the changes in the density with temperature in the body force term.
Based on these assumptions, the governing equations in non-
dimensional forms are as follows:
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with the following boundary conditions

U X; Yð Þ ¼ 0 or −1 or ∓ 0:5; V X;Yð Þ ¼ 0; θ ¼ 1 ∀Y ¼ 0; 0 ≤ X ≤ 1
U X; Yð Þ ¼ 0; V X; Yð Þ ¼ 0 or 1 or 0:5; θ ¼ 0 ∀ X ¼ 0; 0 ≤ Y ≤ 1
U X;Yð Þ ¼ 0; V X;Yð Þ ¼ 0 or ∓ 0:5; θ ¼ 0 ∀ X ¼ 1; 0 ≤ Y ≤ 1

U X; Yð Þ ¼ 0 or 1 or 0:5; V X;Yð Þ ¼ 0;
∂θ
∂Y

¼ 0 ∀ Y ¼ 1; 0 ≤ X ≤ 1

θ 0;0ð Þ ¼ θ 1;0ð Þ ¼ 0:5
ð6Þ

The momentum and energy balance equations [Eqs. (2)–(4)] are
solved by using the Galerkin finite elementmethod [16]. The continuity
equation [Eq. (1)] has been used as a constraint due to the conservation
of mass and this constraintmay be used to obtain the pressure distribu-
tion. In order to solve Eqs. (2)–(3), we use the penalty finite element
method where the pressure P is eliminated by a penalty parameter γ
and the incompressibility criteria are given by Eq. (1), which results in

P ¼ −γ
∂U
∂X

þ ∂V
∂Y

� �
: ð7Þ

For large values ofγ, the continuity equation [Eq. (1)] is automatical-
ly satisfied and based on the constraint optimization, γ=107, found to
give the optimal solution. Applying Eq. (7) in Eqs. (2) and (3), we get
the modified momentum equations. These two modified momentum
equations and the energy balance equation [Eq. (4)] associated with
boundary conditions [Eq. (6)] are solved by the Galerkin finite element
method [16]. As the solution procedure is discussed in an earlier work
[17], the detailed description is not included in this article.

2.2. Streamfunction, Nusselt number, and entropy generation

The fluid flow pattern can be visualized via the streamfunction (ψ)
and the relationship between the streamfunction (ψ) and velocity com-
ponents (U and V) is as follows:
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Here, the positive sign of ψ corresponds to the anticlockwise circulation
and the negative sign ofψ corresponds to the clockwise circulation. The no-
slip condition is applicable for all the boundaries as there is no cross-flowof
the fluid. Therefore, ψ=0 is used for all the boundaries. The heat transfer
rate in terms of the local Nusselt number (Nu) is defined as

Nu ¼ −
∂θ
∂n

; ð9Þ

Nomenclature

g Acceleration due to gravity (m s−2)
Gr Grashof number
k Thermal conductivity (Wm−1 K−1)
L Side of the square cavity (m)
n Normal vector to the plane
Nu Nusselt number
Nu Average Nusselt number
p Pressure (Pa)
P Dimensionless pressure
Pe Peclet number
Pr Prandtl number
Re Reynolds number
Ri Richardson number
Sψ Dimensionless entropy generation due to fluid friction
Sθ Dimensionless entropy generation due to heat transfer
Stotal Dimensionless total entropy generation
T Temperature of the fluid (K)
Tc Temperature of cold wall (K)
Th Temperature of hot wall (K)
u x Component of velocity (m s−1)
U x Component of dimensionless velocity
U0 Characteristic velocity
v y Component of velocity (m s−1)
V y Component of dimensionless velocity
x Distance along x coordinate (m)
X Dimensionless distance along x coordinate
y Distance along y coordinate (m)
Y Component of dimensionless velocity

Greek symbols
α Thermal diffusivity (m2 s−1)
β Volume expansion coefficient (K−1)
γ Penalty parameter
θ Dimensionless temperature
ν Kinematic viscosity (m2 s−1)
ρ Density (kg m−3)
ψ Dimensionless streamfunction
μ Dynamic viscosity (kg m−1 s−1)
Ω Two dimensional domain

Subscripts
b Bottom wall
cup Cup-mixing
i Local node number
l Left wall
r Right wall
s Side wall
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