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A new finite volume method for cylindrical heat conduction problems based on Lnr-type diffusion equation is
proposed in this paper with detailed derivation. On the basis of coordinate transformation, the diffusion term
in the r direction of the heat conduction equation in a cylindrical coordinate is transformed into the Lnr-type
diffusion term. Considering the influence of different boundary conditions, source terms and ratios of the internal
to external radius, four typical categories of cases are calculated by the newly proposed method based on
Lnr-type diffusion equation, themethod based on local analytical solution and traditional central difference finite
volumemethod respectively. The comparison of calculation results indicates that the new finite volumemethod
is more accurate than the conventional one, since when the governing equation is discretized, the new method
transforms λr ∂T

∂r into λ ∂T
∂ ln r and treats this term as a whole to guarantee the conservativeness of diffusion flux.

Numerical results also show that the total calculating time and required computation grid number of the new
method are significantly less than the other two methods for achieving the same level of accuracy.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

To obtain the grid-independent solution under the same conditions,
the computation grid number needed for solving the diffusion problems
in cylindrical coordinate is larger than that in Cartesian coordinate
due to the variation of diffusion area along the r direction [1]. Hence,
considering the influence of such variation, Li et al. [1] proposed a finite
volumemethod for cylindrical heat conduction problems based on local
analytical solution and numerical calculations show that this method is
more accurate than the central difference finite volumemethod, regard-
less of different boundary conditions, source terms and grids. And to
reach the same precision, this method costs much less computation
time than that of the traditional method.

However, the discretized expression of the method based on local
analytical solution is far more complicated than that of the central
difference finite volume method, and this imposes constrains in its
applications. In order to overcome this drawback and ensure high
calculation accuracy at the same time, the present paper proposes a
new method based on Lnr-type diffusion equation which converts the
diffusion equation in cylindrical coordinate into that in Cartesian
coordinate by means of coordinate transformation.

In the following text, this new method is presented as follows. In
Section 2, the derivation of Lnr-type diffusion equation in cylindrical

coordinate is described in detail. Then abundant numerical cases are
shown in Section 3 to compare the performance of the new finite
volume method based on Lnr-type diffusion equation with that of the
method based on local analytical solution and that of the traditional
method, and illustrate the desirable features of the new method from
different aspects. Finally, related conclusions are given in Section 4.

2. Derivation of Lnr-type diffusion equation in cylindrical coordinate

Firstly, it is necessary to briefly review the traditional central
difference finite volume method and the finite volume method based
on local analytical solution. The steady-state heat conduction equation
in a cylindrical coordinate can be written as follows:

∂
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The relationship between grid nodes and interfaces is shown in
Fig. 1.

Discretizing the original governing equation over the control
volumeP (as shown in Fig. 1) by the central difference finite volume
Scheme [2], Eq. (1) can be transformed and rearranged to the
expression below:

aPTP ¼ aETE þ aWTW þ aNTN þ aSTS þ b ð2Þ
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where

aP ¼ aW þ aE þ aS þ aN

aW ¼ rPλwΔrP
δxð Þw

; aE ¼ rPλeΔrP
δxð Þe

; aS ¼
rsλsΔxP

δrð Þs
; aN ¼ rnλnΔxP

δrð Þn
b ¼ rPΔxPΔrPSP :

To improve the accuracy of numerical calculation, Li et al. [1]
proposed a finite volume method based on local analytical solution as
mentioned in Section 1. The heat flux qn and qs at the interface n and s
can be expressed as follows:
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Based on Eqs. (3) and (4), the discretized equation over the control
volume P becomes:

aPTP ¼ aETE þ aWTW þ aNTN þ aSTS þ b ð5Þ

where

aP ¼ aE þ aW þ aN þ aS

aW ¼ rPλwΔrP
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; aE ¼ rPλeΔrP
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Taking interface n as a boundary, the temperature at the boundary
can be obtained for the second and third boundary conditions respec-
tively as follows.

For the second boundary condition:
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For the third boundary condition:
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The results of eight numerical cases in the literature [1] show that, to
reach the same precision, the computation time and required grid num-
ber of themethod based on local analytical solution are less than that of
the traditional central difference finite volume method [1]. These
advantageous features can attribute to the use of Eqs. (3) and (4) to
calculate heat flux at interface which involves the significant influence
of diffusion area and source term along the r direction. But the compli-
cated discretized process of this method brings about great difficulties
in subsequent programming, thus the present paper proposes a simple
and convenient method to calculate heat flux precisely which deals
with λr ∂T

∂r as a whole by means of coordinate transformation. On the

basis of ∂ lnrð Þ ¼ ∂r
r , the heat flux at interface which is λr ∂T

∂r can be

Nomenclature

aP,aE,aW,aN,aS coefficients in the discretized equation
b source term in the discretized equation
hf convection heat transfer coefficient, W/(m2 ⋅ ∘C)
k ratios of the internal to external radius, k = r1/r2
NGrid total grid number
N1 total grid number in the x–Lnr coordinate
N2 total grid number in the x–r coordinate in reference [1]
N3 total grid number in the x–r coordinate
q heat flux density, W/m2

r spatial coordinate
r1 internal radius,r1 = kr2, m
r2 external radius, m
R non-dimensional coordinate in the r direction, R =

(r − r1)/(r2 − r1)
RT ratio of the computation time
S heat source, W/m3

S* source term, S� ¼ Sþ ∂
∂x λ ∂T

∂x

� �
, W/m3

t1 computation time of Scheme 1 in Case 3(a)
t2 computation time of Scheme 2 in Case 3(a)
t3 computation time of Scheme 3 in Case 3(a)
T temperature, °C
Tf ambient temperature, °C
x spatial coordinate
xl length of domain, m
X non-dimensional coordinate in the x direction, X = x/l

Greek symbols
λ thermal conductivity, W/(m ⋅ oC)
Δx, Δr width of control volume in the x and r direction
Δx, ΔLnr width of control volume in the x and Ln rdirection
δx, δr, δ Ln r distance between adjacent nodes

Subscripts
e, w, n, s interfaces of the control volume P as shown in Fig. 1
P, E, W, N, S, NE, SE, NW, SW grid nodes as shown in Fig. 1
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