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Based on the augmented Young–Laplace equation and lubrication theory, a detailed analytical model predicting
the heat and mass transport characteristics of the evaporating meniscus in a micro-channel is developed. The
present model solves the third-order differential equation of the film thickness and the first-order differential
equation of the liquid average velocity simultaneously. The different models for thermal performance of the
evaporating meniscus are also compared to each other. It is found that both the film thickness and cumulative
heat flux by the present model are in good agreement with the results by the previous models. The total heat
flux of evaporating meniscus based on interface temperature calculated by Clausius–Clapeyron equation is far
higher than that obtained by Wayner's interface mass flux model.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Phase change heat transfer devices or processes, such as heat
pipes, vapor chambers, capillary pumped loops or nucleate boiling,
can achieve very high heat fluxes due to thin film evaporation which
takes place on the liquid–vapor interface of heated meniscus [1,2]. An
evaporating extended meniscus developed on the wall within a
micro-channel is shown in Fig. 1. It consists of three distinct regions:
the equilibrium thin film, the evaporating thin film and intrinsic menis-
cus. In the equilibrium thin film, the interfacial thermal resistance is so
large that the liquid–vapor interface temperature is equal to the wall
temperature, and thus the evaporation phenomenon does not occur in
this region. The intrinsic meniscus is dominated by capillary forces.
The evaporating thin film, which exists between intrinsic meniscus
and the equilibrium thin film, is controlled by capillary forces and
disjoining pressure due to intermolecular interactions between the
wall and the liquid.

In order to establish the thin film thickness, the concept of a
disjoining pressure, caused by intermolecular solid–liquid forces, was
introduced by Derjaguin [3].Wayner et al. [4] suggested the evaporative
mass flux as a function of temperature and pressure at the interface
based on Kelvin–Clapeyron equations. Mirzamoghadam and Catton [5]
used an appropriate liquid velocity and temperature distribution in an
integral approach similar to boundary layer analysis to obtain the
evaporating meniscus profile. Stephan and Busse [6] concluded that
the assumption of liquid–vapor interface temperature equal to the

saturation temperature of vapor can lead to a large overprediction of
the radial heat transfer coefficient. Gorla [7] found that the electric
field can significantly enhance heat transfer of the evaporating
meniscus. Wee et al. [8] concluded that the slip effect of elongating
the evaporating thin film region can counteract the thermocapillary ac-
tion of reducing the region. Wang et al. [9] found that the micro-region
is found to account for more than 50% of the total heat transfer of the
evaporating meniscus. Ma et al. [10] made use of order analysis to
simplify the N–S momentum equation of evaporating thin film. Xia
et al. [11] investigated capillary-assisted evaporation of an inclined
micro-groove analytically. Bertossi et al. [12] performed a parametric
study on the evaporating meniscus in the evaporator of heat pipes.
Zhao et al. [13] showed that the nanofluid can greatly increase the
thin film heat transfer. Du and Zhao [14] developed new boundary
conditions for the evaporating meniscus. Benselama et al. [15] used a
linear stability analysis approach to study the evaporating thin film.
Pati et al. [16] revealed that the electrostatic component of disjoining
pressure can elongate the evaporating meniscus. Bai et al. [17] devel-
oped a hybrid axial groove based on thin film evaporation theory and
the fundamental operating principles of heat pipes. Guo et al. [18] inves-
tigated effects of vertical mechanical vibration on evaporation heat
transfer characteristics in rectangular microgrooves.

In this paper, an analytical model for heat and mass transfer charac-
teristics of an evaporating meniscus in a micro-channel is presented.
The present investigation complements previous studies in two ways.
First, the present model associates the liquid average velocity directly
with the liquid pressure gradient through the mass flow rate, and the
third-order differential equation of the film thickness and first-order
differential equation of the liquid average velocity are presented. Only
first-order derivative of the liquid pressure with respect to x is need,
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rather than the second-order derivative of the liquid pressure in
previous model. Second, this paper compares the thermal performance
of the evaporating meniscus obtained by Model 2 (interface tempera-
ture calculated by Clausius–Clapyron equation [5,6,10,12,13,18]), and
Model 3 (Wayner's interface mass flux model [4,7,8,11,14,15,17]) for
the first time. It is found that the total heat flux of the evaporating
meniscus obtained by Model 3 is far lower than that obtained by
Model 2.

2. Theoretical analysis

2.1. Mathematical modeling

In the thin film region, the pressure jump across the liquid–vapor
interface is calculated by the augmented Young–Laplace equation

Pv ¼ Pl þ Pd þ Pc ð1Þ

where Pv is the vapor pressure. Pl is the liquid pressure. Pd is the
disjoining pressure. Pc is the capillary pressure.

The disjoining pressure is due to the long-range vanderWaals forces
between the liquid and the solid over a narrow range of film thick-
nesses, and is determined by

Pd ¼ A
δ3

ð2Þ

where A is the dispersion constant, and δ is the film thickness.
The capillary pressure is expressed as

Pc ¼ σK; K ¼ d2δ
dx2

1þ dδ
dx

� �2� �−3=2

ð3Þ

where σ is surface tension, and K is meniscus curvature.
Assuminguniform vapor pressure distribution along the evaporating

meniscus, Eq. (1) is differentiated with respect to x as

d3δ

dx3
−3

dδ
dx

d2δ

dx2

 !2

1þ dδ
dx

� �2� �−1

þ 1
σ

dPl

dx
−3A

δ4
dδ
dx

� �
1þ dδ
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� �2� �3=2
¼ 0:

ð4Þ

Lubrication theory is often used for the liquid flow in the thin film
region. Applying a no-slip boundary condition at solid–liquid interface
and a stress free boundary condition at liquid–vapor interface, the

massflow rate along x direction is related to the liquid pressure gradient
as:

Γ ¼ − ρl

3μ l

dpl
dx

δ3 ð5Þ

where μl is the liquid dynamic viscosity, and ρl is the liquid density.
The evaporation heat flux at the liquid–vapor interface is equal to

the one-dimensional conduction heat flux through the thin film, thus
giving

−∂Γ
∂x hfg ¼

d
dx

1
3νl

dpl
dx

δ3
� �

¼ Tw−Tivð Þ
δ=kl

ð6Þ

where hfg is the latent heat of evaporation, kl is the liquid thermal
conductivity, Tw is the solid wall temperature, and Tiv is the liquid–
vapor interface temperature.

Combining Eqs. (4) and (6), the fourth-order ordinary differential
equation (ODE) for thin film thickness δ with respect to x is obtained,
and is widely used in most of previous investigations.

Next, this paper will present a third-order ODE for the thin film
thickness. The mass flow rate along the x direction is also related to
the liquid velocity as

Γ ¼ ρl

Z δ

0
udy ¼ ρlδu ð7Þ

where u is the liquid velocity along the x direction, and ū is liquid
average velocity.

Substituting Eqs. (7) and (5) into Eq. (4), the third-order ODE for δ is
obtained as

d3δ

dx3
−3

dδ
dx

d2δ

dx2

 !2
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− 1
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ð8Þ

The evaporation heat flux at the liquid–vapor interface is equal to
the one-dimensional conduction heat flux through the thin film as

q0 ¼ −∂ ρlδuð Þ
∂x hfg ¼

Tw−Tivð Þ
δ=kl:

ð9Þ

Expanding Eq. (9) gives:

du
dx

¼ −kl Tw−Tivð Þ
ρlhfgδ

−u
δ
dδ
dx

: ð10Þ

By solving Eq. (8) (a third-order ODE for film thickness) and Eq. (10)
(a first-order ODE for liquid average velocity) simultaneously, the thin
film thickness and average liquid velocity can be obtained. This model
is named as Model 1 (M1) in this paper.

The liquid–vapor interface temperature Tiv in Eqs. (6) and (10) can
be determined through two classic methods. The first method is inte-
grating the Clausius–Clapyron equation. Expanding the Clausius–
Clapeyron equation [5]

dP
dT

� �
sat

¼ hfg

Tv
1
.

ρv

−1
.

ρl

� � ð11Þ

gives:

TvdPv

ρv
¼ TvdPl

ρl
þ hfgdT : ð12Þ

Fig. 1. The evaporating meniscus in a micro-channel.
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