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The aim of this study is to solve an inverse geometry heat conduction problem (shape identification problem) to
estimate the unknown geometry of the inner surface in a furnace wall which is made of functionally gradedma-
terials (FGMs). The inner surface geometry is estimated from the temperatures of measured points within the
furnace wall. The inverse algorithm used in the study is based on the conjugate gradient method (CGM) and
the discrepancy principle. The effect of measurement errors and measurement locations on the estimation accu-
racy is also investigated. Two different examples are discussed. Results show that the unknown geometry of the
inner wall surface can be predicted precisely by using the present approach.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials, originally proposed by Japanese re-
searchers [1], are nonhomogeneous materials within which physical
properties vary continuously. The smooth variation of properties results
from continuous transition of the volume fraction of constituents. These
novel materials have excellent thermo-mechanical properties to with-
stand high temperature and have been extensively applied to important
structures, such as nuclear reactors, pressure vessels and pipes, and
chemical plants [2–4]. In recent years, FGMs have even been proposed
as a solution for aerospace industry where temperature resistant,
light-weight structures are required to meet the challenges faced by
future high-speed space vehicles.

In the past several decades, inverse analysis has beenwidely applied
to solve engineering problems. In the heat transfer area, external in-
verse problems include estimation of temperature, heat flux, or heat
transfer coefficient [5,6], and internal inverse problems include deter-
mination of thermophysical properties, such as thermal conductivity
and heat capacity [7,8]. In addition, the inverse analysis has also been
applied to the problems related to shape design [9–11] and shape iden-
tification [12–14].

The inside of furnace experiences extremely severe and complex
conditions for a long operating period in industry. Both corrosion effects
and thermal stress can damage the furnacewalls. Hence,monitoring the
shape and temperature of inner surface is quite essential to ensure the
safe operation of the furnaces. Su et al. [15] studied the shape identifica-
tion problems of inner surface of furnaces, and in their work they
supposed that the temperature of the inner wall was known and its

distributionwas uniform.Wang et al. [16] solved the temperature iden-
tification problems of furnace inner surface by a fuzzy inferencemethod
(FIM). Comparisonswith the conjugate gradientmethod and the genet-
ic algorithm (GA) are also conducted.

Although a great number of reports dealing with the shape identifi-
cation problems of homogeneous mediums have been available, how-
ever, to the best of the authors' knowledge, the study on the shape
identification problem of FGMs is limited in the literature. The aim of
thepresent study is to develop an inverse analysis for estimating the un-
known geometry of the inner surface in a furnacewall which is made of
functionally gradedmaterials, from the knowledge of temperaturemea-
surements taken within the wall. The heat conduction problem that the
inverse method is applied is steady state, hence only a couple of spatial
temperaturemeasurements are needed. Here, we present the conjugate
gradientmethod [17–19] and the discrepancy principle [20] to estimate
the unknown inner surface geometry by using the simulated tempera-
ture measurements. The conjugate gradient method with an adjoint
equation, also called Alifanov's iterative regularizationmethod, belongs
to a class of iterative regularization techniques,whichmean the regular-
ization procedure is performed during the iterative processes, thus the
determination of optimal regularization conditions is not needed. No
prior information is used in the functional form of the unknown surface
geometry. On the other hand, the discrepancy principle is used to termi-
nate the iteration process in the conjugate gradient method.

2. Analysis

2.1. Direct problem

In this work a two-dimensional furnace wall system, as shown in
Fig. 1, is considered. The outer radius of the furnace wall is a constant
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value of ro, and the inner radius ri(ϕ) of thewall is assumed to be depen-
dent on the polar angle ϕ. To establish an appropriate physical model,
some reasonable assumptions are presented. The temperature T(r, ϕ)
in the furnace wall is regarded as steady after a long time of operation.
In addition, unlike the standard analysis, which assumes the furnace
wall material to be homogeneous with uniform thermal conductivity,
the present analysis models the nonhomogeneity of the furnace wall
by allowing the thermal conductivity k of furnace wall to vary as a
power function of radial coordinate r , that is,

k rð Þ ¼ ko r=roð Þn; ð1Þ

where n is a constant and ko is the thermal conductivity of outer surface
of the furnacewall. Such a power dependence of the thermal conductiv-
ity occurs in some aerospace and automotive structures [21]. With the
use of Eq. (1), the governing equation for the temperature, T(r, ϕ), of
the two-dimensional furnace wall system in steady state can be
expressed as [16]:
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The associated boundary conditions are given as:

T r;ϕð Þ ¼ Ti; at r ¼ ri ¼ F ϕð Þ; ð3Þ
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¼ h T r;ϕð Þ−T∞½ �; at r ¼ ro; ð4Þ

where Ti is the temperature of inner surface of the furnace wall, h is the
convective heat transfer coefficient at the outer surface, and T∞ is the
surrounding temperature. Since the temperature is periodic in ϕ with
a period 2π, we can have:

T r;0ð Þ ¼ T r;2πð Þ; ri ≤ r ≤ ro; ð5Þ
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For the convenience of numerical analysis, the following dimension-
less parameters are introduced as:
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Introducing these dimensionless variables in Eq. (7) into
Eqs. (1)–(6) leads to the following dimensionless equations:

k ηð Þ ¼ koηn; ð8Þ
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θ η;ϕð Þ ¼ 1; at η ¼ ηi ¼ f ϕð Þ; at η ¼ ηi ¼ f ϕð Þ; ð10Þ
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where the Biot number Bi = hro/ko. The direct heat transfer problem
defined by Eqs. (9)–(13) is bound for gaining the temperature field

Fig. 1. Diagram for the furnace wall system.

Nomenclature

Bi Biot number (hro/ko)
F unknown inner surface geometry of the furnace (m)
f dimensionless unknown inner surface geometry of the

furnace
h convection heat transfer coefficient (Wm−2 K−1)
J functional
J′ gradient of functional
k thermal conductivity (Wm−1 K−1)
ko thermal conductivity at the outer surface of the furnace

(Wm−1 K−1)
n nonhomogeneity index
p direction of descent
r radius of the furnace (m)
ri inner radius of the furnace (m)
rm radius of temperature measurement positions (m)
ro outer radius of the furnace (m)
(r, ϕ) cylindrical coordinates
T temperature (K)
Ti temperature of inner surface of the furnace (K)
T∞ surrounding temperature (K)

Greek symbols
Δ small variation quality
β step size
γ conjugate coefficient
ε very small value
η dimensionless radius of the furnace
ηm dimensionless radius of temperature measurement

positions, rm/ro
θ dimensionless temperature
λ variable used in the adjoint problem
σ uncertainty of temperature measurement
ϖ random variable

Superscript/subscript
N iterative number
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