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The one-phase reduction of the Stefan problem, where the phase change temperature is a variable, is analysed. It
is shown that problems encountered in previous analysesmay be traced back to an incorrectly formulated Stefan
condition. Energy conserving reductions for Cartesian, cylindrically and spherically symmetric problems are
presented and compared with solutions to the two-phase problem.
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1. Introduction

The Stefan problem where the phase change temperature is fixed is
a classical example of a moving boundary problem and has been well-
studied for more than 100 years. However, with the advent of a number
of new technologies, the situation where a material's phase change
temperature differs from the standard value is becoming increasingly
important. For example, materials made from supercooled liquids are
currently used inmedicine, defence and aerospace equipment, electron-
ics and sports [8,15]. The phase change temperature of supercooled
liquids can vary because the liquid molecules have lower energy than
when solidifying under normal circumstances and this affects their
ability to move to the solid interface. Nanoparticles have a vast array
of applications in medicine, environmental remediation, materials and
energy [7]. A key factor in understanding the melting of nanoparticles
is the large decrease in melt temperature with decreasing size, for ex-
ample a 2 nm radius gold nanoparticle will melt at approximately
500 K below the bulk melt temperature [3]. In this case the high curva-
ture of the melt interface leads to a large value for the surface tension
induced stress which then reduces the melt temperature.

In order to simplify the mathematical description of the phase
change process it is common to neglect one of the material phases, to
produce the one-phase Stefan problem. When the melt temperature is
the standard (or homogeneous) phase change temperature, here denot-
ed Tm⁎, then the one-phase problem is usually well-defined. However,
when the phase change temperature is variable then difficulties arise
(for example, energy may not be conserved) [6,13,19]. The issue with
the one-phase formulation has been investigated by looking at

asymptotic limits of low thermal conductivity in the solid (compared
to that in the liquid) [6] and large conductivity in the solid [13].

In this paper wewill demonstrate that problemswith the one-phase
reduction may arise due to inconsistent assumptions concerning the
temperature in the neglected phase. If the reduction is carried out
consistently then there is no problem with the energy conservation.
The one-phase reduction is invoked to simplify the analysis, and anoth-
er standard simplification involves assuming constant thermal proper-
ties throughout the process. If we consider the ratio of the thermal
conductivity of water to ice k = ks/kl ≈ 4 and the specific heat ratio
c= cs/cl≈ 0.5 then it is clear that this assumption can lead to significant
errors. Consequently in the following we will work with different (con-
stant) values in each phase. The density also varies, usually to a lesser
extent than conductivity and specific heat [1]. If we include density
change in our analysis then the governing equations becomemore com-
plex, with the addition of advection and kinetic energy, see [9]. Conse-
quently, to keep down the number of terms in the equations and so
simplify the argumentswewill focus on the situationwhere the density,
ρ, is constant throughout the process. However, the arguments may be
easily adapted to include it using the equations described in [9].

2. Governing equations for phase change

We will now derive the Stefan condition and heat equations for a
one-dimensional Cartesian problem via an energy balance. For simplic-
ity we examine the case of fixed density and so avoid the velocity terms
caused by the shrinkage or expansion of the material.

The governing equations for the Stefan problem may be obtained
from the energy conservation equation

∂
∂t ρI�
� � ¼ −∇ � q�

; ð1Þ
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where ρ is the density, I* the internal energy and the conductive heat
flux q* = − k∇T*. This simply states that internal energy varies with
time due to heat movement through the boundary. The star superscript
indicates dimensional variables. The internal energy/unit mass is

I�s ¼ cs θ�−T�
m

� �
I�l ¼ cl T

�−T�
m

� �þ Lf ; ð2Þ

where subscripts s and l denote solid and liquid, and θ* and T* denote
the respective temperatures. The heat equations may be obtained
from the energy balance by simply substituting for I* and q* in Eq. (1)

∂
∂t� ρcs θ�−T�

m

� �� � ¼ ∂
∂x ks

∂θ�

∂x�
� �

ð3Þ

∂
∂t� ρ cl T

�−T�
m

� �þ Lf

� 	h i
¼ ∂

∂x kl
∂T�

∂x�
� �

: ð4Þ

Noting that all thermal properties and Tm⁎ are constant within each
phase leads to the familiar form

ρcs
∂θ�

∂t� ¼ ks
∂2θ�

∂x�2
ρcl

∂T�

∂t� ¼ kl
∂2T�

∂x�2
: ð5Þ

The Stefan condition may also be obtained from the conservation
Eq. (1) via the Rankine–Hugoniot condition

∂ f
∂t þ∇ � g ¼ 0 ⇒ f½ �þ−st ¼ g � n½ �þ− ; ð6Þ

where n is the unit normal (in this case it is simply x̂) and f and g are
functions evaluated on either side of the discontinuity, x* = s*(t*). For
the case where a fluid initially occupying x* ≥ 0 is solidified from the
boundary x* = 0 we take the + superscript to indicate fluid, x* N s*,
and − to indicate solid, x* b s*. Comparing the energy balance (Eq. (1))
to the Rankine–Hugoniot condition shows that f = ρI*, g = q*, and
the Stefan condition follows from the second of Eq. (6)

ρ cl T
� s�; t�
� �

−T�
m

� �þ Lf

� 	
−cs θ� s�; t�

� �
−T�

m

� �h i
s�t�

¼ −kl
∂T�

∂x�





x�¼s�

þ ks
∂θ�

∂x�





x�¼s�

: ð7Þ

The spherically and cylindrically symmetric versions are obtained
from

∂
∂t� ρcs θ�−T�

m

� �� � ¼ ∇ � ks∇θ�
� � ∂

∂t� ρ cl T
�−T�

m

� �þ L f

� 	h i
¼ ∇ � kl∇T�� �

ð8Þ

ρ cl T
� s�; t�
� �

−T�
m

� �þ Lf

� 	
−cs θ� s�; t�

� �
−T�
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� �h i
s�t�

¼ −kl
∂T�

∂r�





r�¼R�

þ ks
∂θ�

∂r�





r�¼R�

; ð9Þ

where the phase change front is now located at r* = R* and tempera-
tures depend on r*, t*.

3. Stefan problem with melting point depression

The standard two-phase, one-dimensional Cartesian Stefan problem
withmelting point depression is typically specified by heat equations in
the solid and liquid phases and the following Stefan condition

ρ cl−csð Þ T�
I tð Þ−T�

m

� �þ L f

h i
s�t� ¼ −kl

∂T�

∂x�





x�¼s�

þ ks
∂θ�

∂x�





x�¼s�

; ð10Þ

where TI⁎(t) is the interface temperature, see [1,4,6,7,20,13,18,19]. The
variation of TI⁎(t) may be described by a number of relations. For

supercooling models an exponential relation between TI⁎ and s�t� holds.
This is frequently linearised for small departures from the bulk phase
change temperature so T�

I−T�
m∝s�t� [5,8]. With high curvature some

form of Gibbs–Thomson relation is typically used [7,8].
In order to follow previous asymptotic reductions we will now for-

mulate the non-dimensional version of the problem via the following
scales,

θ ¼ θ�−T�
m

ΔT� T ¼ T�−T�
m

ΔT� x ¼ x�

L
t ¼ t�

τ
ð11Þ

where ΔT * is a temperature scale and τ the time-scale. In the Stefan
problem without melting point depression the length-scale L may be
unknown. With melting point depression L may be specified according
to the equation governing the phase change temperature. Choosing
the time-scale for heatflow in the liquid, τ= ρclL2/kl, the heat equations
now reduce to

∂θ
∂t ¼

k
c
∂2θ
∂x2

∂T
∂t ¼ ∂2T

∂x2
: ð12Þ

The Stefan condition becomes

1−cð ÞTI tð Þ þ β½ �st ¼ −∂T
∂x






x¼s tð Þ

þ k
∂θ
∂x






x¼s tð Þ

; ð13Þ

where β = Lf/(clΔT), k = ks/kl, c = cs/cl.
These equations are often simplified via a one-phase approximation.

Say, for example we neglect the solid phase, then we only need to solve
the heat equation in the liquid while the Stefan condition becomes

1−cð ÞTI tð Þ þ β½ �st ¼ −∂T
∂x






x¼s

: ð14Þ

The most familiar form of the Stefan condition may be obtained by
neglecting melting point depression, so setting TI = 0 (TI⁎ = Tm⁎) in
Eq. (14). Eq. (14)may also be obtained by choosing θ(x, t) to be constant
or a function of time.Wu et al. [19] discuss paperswhere the solid phase
is simply ignored, see [17,21]. Many authors assume θ(x, t) = TI(t) [4,5,
10] or alternatively θ(x, t)=0 [11]. Thefirst choice has the problem that
it does not satisfy the heat equation, while the second does not satisfy
the interface boundary condition. A more formal way to reduce the sys-
tem is to let k= 0, so the liquid conducts heat infinitely faster than the
solid. Then the solid temperature is removed from the Stefan condition
while the heat equation in the solid becomes θt =0 and so θmay be set
as a function of x: in practice it is usually taken as 0 or the initial temper-
ature θ(x, 0) = θ0.

Evans and King [6] discuss a number of papers where the Stefan
problem is incorrectly formulated and discuss in detail the approxima-
tion where Eq. (14) with TI = 0 is used in conjunction with melting
point depression. They point out that this form is popular since it arises
in the case without supercooling and is accurate in the limit of large
Stefan number. It may also be derived from Eq. (13) with the common
assumption that c=1 and then choosing k=0 to remove the contribu-
tion of the solid phase. Wu et al. [19] discuss similar reductions in the
context of spherical nanoparticle melting. They state that when the ini-
tial temperature is different to the phase change temperature then the
one-phase limit may only be derived under the assumption k ≪ 0.

In [6] it is stated that the supercooled Stefan problem using Eq. (14)
with TI = 0 does not conserve energy. To understand this statement
consider the total internal energy in the system

E ¼
Z s

0
cθ dxþ

Z ∞

s
T þ βð Þdx ; ð15Þ

38 T.G. Myers, F. Font / International Communications in Heat and Mass Transfer 61 (2015) 37–41



Download English Version:

https://daneshyari.com/en/article/653099

Download Persian Version:

https://daneshyari.com/article/653099

Daneshyari.com

https://daneshyari.com/en/article/653099
https://daneshyari.com/article/653099
https://daneshyari.com

