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The current study explored the capability of a discrete particle method known as dissipative particle dynamics
with energy conservation (eDPD) to simulate combined convection heat transfer in a vertical lid driven cavity.
The study investigated two cases of aiding and opposing buoyancy mechanisms in the lid driven cavity. The
eDPD results were compared against the finite volume solutions for the range of Richardson number,
10−2 ≤ Ri ≤ 102. The method showed good comparison for the range of Richardson number 10−2 ≤ Ri ≤ 101.
However, the eDPD method showed deviation from the FV solutions for a high value of Richardson number,
Ri= 102, and this deviation is attributed to the compressibility of eDPD system experienced at such high value
of Richardson number. Parametric study on the influence of the Richardson number (Ri) on the eDPD compress-
ibility was conducted and presented via temperature isotherms, streamlines, velocity contours, velocity vectors,
temperature and velocity profiles.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Dissipative particle dynamics (DPD)was introducedbyHoogerbrugge
and Koelman [1] as a coarse-grained version of molecular dynamics
method that could capture larger time and spatial scales compared
to molecular dynamics scales. This feature has attracted various re-
searchers to mimic fluid flow physics encountered at micro scale and
nanoscale applications since its emersion [2–7]. Español [8] and Avalos
andMackie [9] extended the applicability of the DPD approach to tackle
thermal energy transport by adding internal energy for each DPD parti-
cle. Such insertion of internal energy in the DPD model was shown to
conserve energy and this version of DPD is known in literature as ener-
gy conservative dissipative particle dynamics (eDPD) [8]. Fundamental-
ly, each eDPD particle is prescribed by internal energy in addition to
other quantities found in the classical DPD models (position, velocity,
and mass).

Over the past fifteen years, the application of the eDPD approach to
heat transfer was investigated by various researchers. Ripoll et al. [10]
and Ripoll and Español [11] focused on the application of eDPD to
one-dimensional heat conduction and it was found that the method is
capable of modeling heat conduction precisely. Themethod is extended
to model heat conduction in nano composites by Qiao and He [12] and
heat conduction in nanofluids by He and Qiao [13]. Chaudhri and
Lukes [14] applied the eDPD method to 2D heat conduction. Abu-Nada

[15,16] implemented different types of boundary conditions to 2D
heat conduction domain using the eDPD method and benchmarked
the eDPD results against analytical and finite difference solutions.
Recently, Yamada et al. [17] applied eDPD to model conduction in
nanofluids.

On the other hand, the application of eDPD approach to convective
heat transfer problems was limited. For example, Mackie et al. [18] ap-
plied the eDPD approach to heat flow in differentially heated enclosure.
Abu-Nada [19,20] extended the application of eDPD to model convec-
tive heat transfer. He focused on natural convection applications and
tested the approach over a wide range of Rayleigh number where he
carried a critical quantitative benchmark in natural convection via two
basic heat transfer problems which are differentially heated enclosures
(DHE) and Rayleigh–Bénard convection (RB) problem [19,20]. Yamada
et al. [21] studied forced convection heat transfer in parallel plate chan-
nels by the eDPD approach. The application of eDPD to other geometries
was conducted by Cao et al. [22]. Recently, Abu-Nada [23] extended the
eDPD approach to handle liquids by increasing the eDPD viscosity and
producing higher Prandtl numbers that mimic water convection in rel-
atively high values of Rayleigh numbers. Most recently, Abu-Nada [24]
conducted a study on a horizontal lid driven cavity where the working
fluid is air. Based on the previous review, it is very important to apply
eDPD to more fundamental problems of convection heat transfer
to advance the eDPD applicability as a robust tool that couldmimic con-
vective heat transfer applications. The method will be assessed under a
wide range of combined convection applications ranging from approxi-
mately purely natural convection to almost purely forced convection.
Besides, the method will be tested under a rigorous condition by
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changing the rotational direction of natural convection flow currents
relative to forced convection flow currents by adjusting the thermal
boundary conditions in the cavity. Basically, two types of thermal
boundary conditions are employed to simulate aiding and opposing
flow in the lid driven cavity. These tests will assess the suitability of
the eDPD method to mimic mixed convective heat transfer problems

and will test the compressibility of eDPD method under such rigorous
conditions.

2. Governing equations of eDPDmodel

The eDPD method is a particle method based on pairwise interac-
tions between adjacent particles within a cut-off radius. The eDPD par-
ticles are coarse-grained particles where each eDPD particle represent
a group of real fluid molecules. The movement of eDPD particles is
governed by conservation of mass, momentum and energy and is de-
scribed by the following set of equations by employing the Boussinesq
approximation [19,23]:
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where β is the thermal expansion coefficient and g! is the gravity vector.
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i j represent conservative, dissipative, and random
forces, which can be written as [2,7,23]:
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The weight function w decreases monotonically with particle–
particle separation distance. It becomes zero beyond the cut-off radius
and given as [19],
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The heat flux vectors qij
cond, qijvisc, and qij

R account for conduc-
tion, viscous, and random heat fluxes respectively and are given as
[10,11,13,19,23]:

qcondi j ¼
X
j≠i

κ i j w
2 ri j
� � 1

Ti
− 1

T j

 !
ð8Þ

qvisci j ¼
X
j≠i

1
2Cv

wD ri j
� �

γi j e!i j � v!i j

� �2−σ2
i j

m

" #
−σ i jw

R ri j
� �

e!i j � v!i j

� �
ζ i j

 !

ð9Þ

qRi j ¼
X
j≠i

αi j w
R ri j
� �

Δt−1=2 ζ e
i j ð10Þ

where rij = ri − rj and vij = vi − vj.
The parameter aij is the repulsion parameter between the eDPD par-

ticles and the parameters γij and σij in Eqs. (5) and (6) define the
strength of dissipative and random forces, respectively [2]. Further-
more, the parameters κij and αij appearing in Eqs. (8) and (10) adjust
the strength of the collisional and random heat flux, respectively [10,
11]. The random number ζij that appears in Eq. (6) is a random number

Nomenclature

a repulsion parameter
Cv specific heat at constant volume, J/kg.K
e unit vector
f force, N
Gr Grashof number, Gr = gβ(TH-TC)H3/(νC2)
H cavity height, m
k thermal conductivity, W/m.K
kB Boltzmann constant
ko parameter controlling thermal conductivity of the eDPD

particle
m mass of the eDPD particle
n normal vector
p dimensional pressure, N/m2

P dimensionless pressure, P = p/(ρUp
2)

Pr Prandtl number, Pr = νC/αC

q heat flux, W/m2

r position vector
rc cut-off radius
Ra Rayleigh number, Ra = gβ(TH-TC)H3/(νC αC)
Re Reynolds number, Re = UpH/νC
Ri Richardson number, Ri = Gr/Re2

T dimensional temperature, °C
t dimensional time, s
t′ dimensionless time, t′ = (t/(H/Up))
u, v dimensional x- and y-component of velocity, m/s
U, V dimensionless x- and y-component of velocity, U = u′/

Up, V = v′/Up

w weight function
x, y dimensional coordinates, m
X, Y dimensionless coordinates, X = x/H, Y = y/H
α thermal diffusivity, m2/s
β thermal expansion coefficient, 1/K
γ dissipative force parameter
ζ random number for the momentum equation
ζe random number for the energy equation
θ dimensionless temperature, θ = (T-TC)/(TH-TC)
κ collisional heat flux parameter
λ random heat flux parameter
ν kinematic viscosity, m2/s
ρ mass density, kg/m3

σ amplitude of the random force

Subscripts
C cold
H hot
i, j indices

Superscripts
C conservative
D dissipative
R random
cond conduction
visc viscous
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