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The present work reports the development and application of a simplified numerical approach for solving the
transient Radiative Transfer Equation (RTE) using Discrete Transfer Method (DTM) in two-dimensional coordi-
nate system. The numerical formulation of the proposed scheme is discussed in detail and its application in the
context of understanding light propagation phenomenon in laser-irradiated numerically simulated biological tis-
sue phantoms has been demonstrated. The developed mathematical model has first been benchmarked against
the results published in the literature for the same operating conditions. Thereafter, the results of a detailed para-
metric study have been presented to investigate the effects of optical properties of the biological phantom on the
intensity distributionwithin the two-dimensional tissue phantom, net transmittance and reflectance, etc. The ef-
fect of anisotropy of the tissue medium has also been studied to understand the phenomenon of light propaga-
tion within the body of the sample. Based on the results of the study, it has been inferred that the developed
numerical methodology for two-dimensional Discrete Transfer Method successfully predicts the physics of the
phenomena of light propagation within the tissue phantom and compares well with the other conventionally
employed numerical models for solving the Radiative Transfer Equation.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Radiative heat transfer has been an area of active research in the re-
cent past. Traditionally, the radiative heat transferwithin a participating
medium is modelled using the Radiative Transfer Equation (RTE) pro-
posed by Chandrasekhar [1] and since then it has been applied to vari-
ous areas such as studying heat transfer phenomena in furnaces,
boilers, and internal combustion engines and in applications like
photo-thermal therapy, optical tomography and pulsed laser interac-
tion with materials, etc. [2,3]. The RTE is a complex integro-differential
equation which can be solved numerically to obtain the intensity and
subsequently the heat flux distribution within the medium. Various
schemes such as the zonal method, 2-flux method, Monte-Carlo meth-
od, Discrete Transfer Method (DTM), Discrete Ordinate Method
(DOM), and Finite Volume Method (FVM) have been used to obtain
the solution of the Radiative Transfer Equation [4]. However, the zonal
method has its limitation in handling complicated geometries and can-
not be coupled with the flow-field and energy equations. The Monte-
Carlo method can handle complex geometries but its coupling with
the energy equation for determination of temperature field is difficult.
Moreover, the computational time required is extremely high. DTM is
a hybrid of the zonal method and Monte-Carlo method [2,5–10]. In

thismethod, the energy emitted is divided into the hemisphere alongfi-
nite number of rays, the radiation leaving the surface element in a cer-
tain range of solid angles can be approximated by the single ray [11].

DTM was first proposed by Lockwood and Shah [5] for studying
steady state radiation heat transfer in combustors. The numerical solu-
tion of transient RTE using DTM was later discussed by various authors
[2,3]. A comparative study of DOM, DTM and FVM has been presented
by Mishra et al. [3] for a one-dimensional medium subjected to short
pulse laser irradiation. The approximation error in determining heat
flux using DTM has been reported by Versteeg et al. [12]. Coelho and
Carvalho [13] examined that the original formulation of DTM used is
generally non-conservative i.e. it does not satisfy the principle of conser-
vation of energy.

In recent times, DTM has attracted the attention of various re-
searchers as the method offers an advantage in terms of its applicability
for complex geometries as compared to DOM. Coelho [14] has com-
pared the accuracy of results obtained usingDTM andDOM for radiative
heat transfer in non-grey gases. It was reported that for such applica-
tions, the DTM predicts more accurate results and fares better in com-
parison with DOM. Also, DTM, being a ray-tracing method, can be
applied to solve RTE in a medium with varying refractive index, as re-
ported by Krishna andMishra [7]. The trajectory of light intensity prop-
agation can be determined using Snell's law, alongwhich the RTE can be
solved. However, these studies are limited to one-dimensional domain
only and a detailed methodology for solving the transient form of RTE
for two-dimensional medium using DTM is not available in the
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literature. With this background, the present work reports a simplified
methodology to solve the transient formof RTE in two-dimensional par-
ticipating medium using DTM.

2. Mathematical formulation

Consider a two dimensional medium subjected to short pulse laser
irradiation at its top surface. As shown in Fig. 1, the 2-D domain has
been discretized into a number of control volumes. Consider a point P1
on the boundary control volume at the centre of one of the cell faces.
We “fire” a number of rays (Mθ) in predefined directions (θl) till it inter-
sects the other boundary surfaces at points Qj. In Fig. 1, P1Q1 is the ray
from the boundary point P1 at an angle ΩP1Q1. The intensity along the
ray P1Q1 is represented as IP1Q1. Similarly ray P1Q2 is at an angle ΩP1Q2.
From a particular point Qj, the ray is then traced backwards up to the
point P and the discretized Radiative Transfer Equation is solved along
that particular ray for each control volume. The point at which a partic-
ular ray enters a given control volume is termed as the Upstream point
(U) and the point where it leaves the control volume is denoted by the

Downstream point (D). The intensity at the downstream point is then
determined knowing the intensity value at the upstream point (U).

2.1. Radiative Transfer Equation

The RTE describes the propagation of light of intensity Iwithin a par-
ticipating medium. The transient form of RTE in terms of extinction co-
efficient (=κ + σ) can be expressed as [14,15]

1
c
∂I
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∂I
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The intensity Iwithin themedium is composed of two parts, namely
the collimated intensity Ic and diffused intensity Id [3].

I ¼ Ic þ Id: ð2Þ

The variation of collimated component within the medium is given
by the Beer–Lambert's law as

∂Ic
∂s ¼ −βIc: ð3Þ

Substituting Eqs. (2) and (3) in Eq. (1) yields
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Sc and Sd are respectively the collimated source term and diffuse
source term.

In order to evaluate the source term, for linear isotropic phase func-
tion, we have

p bs0; ŝ� �
¼ 1þ a ŝ � bs0� �

: ð6Þ

Here a represents the anisotropic factor.
In terms of non-dimensional time t*= βct, Ic can be expressed as [3]
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�� �
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where H is the Heaviside function and δ is the Dirac-delta function.

Nomenclature

a anisotropy factor
c velocity of light in medium
n̂ unit vector normal to the surface
p scattering phase function
q heat flux
s distance travelled by beam
ŝ unit vector in s direction
t time
tp pulse width of laser
M number of divisions
G irradiation
I intensity
S source

Greek symbols
σs Stefan–Boltzmann's constant
Ω solid angle
β extinction coefficient
θ, ϕ polar and azimuthal angle
κ absorption coefficient
μ, ζ Direction cosines in x and y directions
σ scattering coefficient
τ optical thickness
ω scattering albedo
ϵ emissivity

Subscripts
av average
c collimated
d diffused
w wall

Superscripts
m index for a discrete direction
D Downstream
U Upstream
* non-dimensional parameter

Fig. 1. Discretization of domain.
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