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In this paper, we have numerically studied the heat transfer in a composite system of living tissues by taking into
consideration the effect of thermal relaxation time. The composite system of living tissues comprises two layers
in which the heat transfer takes place in one layer due to pure diffusion, while in the other layer due to both per-
fusion and diffusion. The modified Pennes bioheat equation is considered by introducing a thermal relaxation
time which is the ratio of the thermal diffusion to the square of the heat propagation velocity in the medium.
We assume that heat mainly propagates in the direction perpendicular to the skin surface. The problem is solved
numerically by developing the Crank–Nicolson implicit finite difference scheme. With an aim to validate our
numerical results, a comparison has been made with the previous solution and shows excellent agreement.
The study shows that the relaxation time has a significant impact on the temperature distribution in a two
layer composite system of living tissues.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Heat transfer in a composite system of living tissues is a very impor-
tant process because of itsmany engineering applications. Hyperthermia
treatment in cancer therapy is one of the most fundamental issues
within biological tissues [1,2]. It has also other therapeutic applications
involving rapid heating or cooling of living organs [3]. In most of the
studies, bioheat transfer [2,4–7] has been modeled using the Pennes
bioheat transfer equation based on the assumption that heat transfer
takes place between the tissue and blood in capillaries. During the heat
exchange between the tissue and themicro-capillary network (subcuta-
neous), perfusion plays an important role to bring the tissue tempera-
ture to its body core temperature. But there are some situations such
as near the skin surface (dermis and epidermis) where no perfusion
takes place. In this situation heat transfer is governed by pure diffusion.
With this end in view, Becker [8] examined the heat conduction problem
into a living perfuse and non-perfuse two layer composite system. In this
study he modeled the problem based on the Pennes bioheat equation in
the perfusion and diffusion layer, whereas a simple diffusion model was
used in the non-perfusion i.e., in the pure diffusion layer. The problem
has been solved analytically by using the separation of variables
technique. However, the abovementioned study was restricted to the
consideration of thermal relaxation time. Because the diffusion theory
always produces a decayed temperature in time due to the presence of
first order time derivative in the diffusion equation. Therefore, the

thermal wave model introduces a relaxation time which results in a
heat flux vector to respond to the thermal disturbances [6,9]. Moreover
the delayed response of the temperature is due to the micro-structural
interactions between the phonons and electrons on the microscopic
level [10]. Lor and Chu [11] analyzed how interface resistance affects
heat transfer in a two layered composite media, wherein they consid-
ered a simple hyperbolic heat conduction equation based on the thermal
wave model. Their study is restricted to the consideration of blood
perfusion phenomena in the depth tissue level. Shih et al. [12] examined
the effects of pulsatile blood flow in a thermally significant blood vessel
by considering the effective thermal conductivity of tumor tissues and
thermal relaxation time in solid tissues of the temperature distribution
during thermal treatment. Rodrigues et al. [13] carried out the analytical
solution of a one dimensional bioheat transfer equation in a multilayer
region with spatially dependent heat sources. They used different heat
source terms to simulate the heating in a tumor and surrounding tissue,
induced during a magnetic fluid hyperthermia technique. They devel-
oped their model based on the Pennes bioheat transfer equation, but
without the corresponding thermal wave theory.

Owing to the abovementioned discussions, we have numerically
studied the bioheat transfer in a two-layer composite system in the
presence of thermal relaxation time using the thermal wave theory
[14]. The governing equation based on the one dimensional spatially
modified Pennes bioheat transfer equation subject to the appropriate
boundary conditions is solved using an implicit finite difference scheme.
The computed results are presented graphically for the dimensionless
temperature with varying time and space (skin surface to the depth of
the tissue) for different values of the thermal relaxation time (τ), the
Biot number and blood perfusion rate.
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2. Geometrical configuration and problem formulation

Let us consider a composite system of living tissues divided into two
layers. The first layer is considered near the skin surface up to the tissue
level of epidermis and dermis region, where the temperature distribu-
tion is assumed to be pure diffusion. The second layer is considered as
depth of the tissue layer comprising the subcutaneous region in which
the temperature distribution is maintained on the basis of the principle
of both diffusion and perfusion. In the geometrical model (cf. Fig. 1)
the length of the first layer is denoted by L1 and that of the second
layer is L2. The spatial coordinate for both the layers is individually rep-
resented by x1⁎ and x2⁎ respectively along the X-axis. The interface be-
tween two layers is represented by the coordinate (x1⁎ = L1 and
x2⁎ = 0). A convective heat transfer with convection coefficient h and
ambient temperature T∞ is specified at the outer surface (x1⁎ = 0) of
the first layer. The second layer consists of perfuse tissue and

experiences blood perfusion aided diffusion. Therefore the temperature
at the other surface (x2⁎= L2) is prescribed as arterial or blood tempera-
ture Tb. Let us introduce the thermal relaxation time τ* (ratio of the coef-
ficient of diffusivity to the square of the speed of the propagation of
thermal wave) based on the thermal wave model in both the layers.

The one dimensional energy equation for the non-perfuse tissue in
the first layer is governed by the diffusion equation as
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The one dimensional energy equation for the perfusion aided diffu-
sion equation in the second layer is governed by the modified Pennes
bioheat transfer equation [15] and is given by
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where T1⁎ and T2⁎ are the temperature of the tissue for the first and
second layers respectively, ρ is the density of the tissue, C is the specific
heat of the tissue, k1 is the thermal conductivity of the tissue in the first
layer, k2 is the thermal conductivity of the tissue in the second layer, ρb,
Cb and Wb are respectively the density, specific heat and perfusion rate
of blood and qm represents the metabolic heat source.

It is noted that when τ* = 0, then Eq. (1) simply reduces to the heat
conduction diffusion equation, while Eq. (2) represents the one dimen-
sional Pennes bioheat transfer equation.

The boundary condition at the skin surface (x1⁎=0) in terms of heat
flux (cf. Fig. 1) is taken as
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where h is the heat convection coefficient at the skin surface. The
boundary condition at body core (x2⁎ = L2) temperature is taken as
the same as blood temperature, i.e.,
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The continuity boundary conditions at the interface between two
layers (x1⁎ = L1 and x2⁎ = 0) are given by
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Nomenclature

C Specific heat of tissue (J/kg °C)
Cb Specific heat of blood (J/kg °C)
K Thermal conductivity (W/m °C)
L Length of the tissue layer (m)
qm Metabolic heat generation (J/m3)
Qm Dimensionless heat generation: Qm = qmL2

2/k2(T∞ − Tb)
t⁎ Time (s)
t Dimensionless time: t = t∗α1/L12

T Temperature of tissue (°C)
Tb Core arterial blood temperature (°C)
T∞ Ambient temperature (°C)
Wb Perfusion rate of blood (kg/m3 s)
W Dimensionless perfusion:W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WbCbρbL

2
2=k2

q
x⁎ Dimensional spatial coordinate (m)
x Dimensionless spatial coordinate: xi = xi

∗/Li
f Initial condition
F Initial condition
h Convection heat transfer coefficient
H Biot number: H = hL1/k1

Greek symbols
α Thermal diffusivity: αi = ki/ρc
θ Dimensionless temperature: θi = (Ti − Tb)/(T∞ − Tb)
κ Dimensionless ratio of conduction resistances:

κ ¼ k2=L2ð Þ
k1=L1ð Þ

δ Dimensionless ratio of Fourier numbers: δ ¼ α2=L
2
2ð Þ

α1=L
2
1ð Þ

ρ Density (kg/m3)
τ∗ Relaxation time (s)
τ Dimensionless relaxation time: τ = τ*α1/L12

ω∗ Heating frequency
ω Dimensionless heating frequency: ω ¼ ω�L21
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Fig. 1. A geometrical sketch of the problem.
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