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In this paper simulation of vapor condensation, liquid film formation, and dew drop sprinkling from cryogenic
horizontal tube base on two-dimensional lattice Boltzmann method is presented. Lee's multiphase model is
usedwhich is applicable to high density and viscosity ratios. The passive scalar thermal lattice Boltzmann frame-
work and proper source term due to phase change are combinedwith themultiphasemodel to simulate the film
condensation. Lee'smodel is based on convective Cahn-Hilliard equation and the divergence-free condition of the
velocity field. However, as the phase change occurs at the interface, the divergence-free condition is no longer
satisfied. The simple passive scalar approach is employed for the evolution of the temperature field in the com-
putational domain and the flow field is affected by temperature under the hypothesis of Boussinesq. The D2Q9
lattice structure is used for the case of density ratio of 25), and the effects of gravitational superheating, contact
angle and the temperature of sub-cooled tube on vapor condensation are illustrated. Finallyflow fields and three-
phase contact line movement of film condensation are analyzed.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most effective heat transfer modes is condensation. The
physical mechanism of film-wise condensation on a horizontal tube is
very complicated, as the process includes liquid generation, growth
and dewdrop sprinkling. In the past century, a great deal of experimen-
tal and analytical research has been done in this field. One of the first at-
tempts in investigating of condensation can be found inNusselt [1]. Date
to 1916, laminar film condensation on flat vertical surfaces and horizon-
tal cylinders placed in quiescent saturated vapors were analytically pre-
dicted by Nusselt. Since inherent assumptions limit Nusselt's model,
many researchers attempted to develop more accurate model which
overcomes most of the limitations, Nusselt's model faced. Shekriladze
and Gomelauri [2] investigated the flowing vapor condensation consid-
ering the interfacial shear by consideringmomentumtransfer across the
interface due to the condensation process and found that the phase
conversion dominated the interface shear. Fujii et al. [3] proposed an ap-
proximate method to solve the two-phase boundary layer equation to
investigate the laminar film condensation of flowing vapor on a vertical
surface [3] and a horizontal cylinder [4]. Their formulation neglected in-
ertia, convection and pressure gradient effects in the condensate film.
Their model was validated against the experimental results.

Gaddis [5] solved the two-phase boundary equations of liquid and
vapor flowing perpendicular to a tube for laminar film condensation

using series expansions. Heneglected surface tension in themomentum
equation aswell as viscous dissipation and pressure in the energy equa-
tion of the condensate film. Rose [6] examined the effects of pressure
gradient on the forced-convection film condensation on a horizontal
tube. In this model, the pressure gradient on the condensate film is
due to the pressure gradient of the vapor, as determined by potential
theory, which is impressed on the condensate film. He simplified the
analysis by using the Shekriladze–Gomelauri model [2] which ignores
inertia and convection in the condensate film and uses the asymptotic
expression for the interfacial shear.

Afterward, in order to design the engineering systems, e.g. power-
plants, heat exchangers and refrigeration, many effects on the film con-
densation have been addressed, including surface temperature [7–9],
turbulent flow [10,11], wall suction [12–14] and others [15–19].

In the past, most of the researchers in this field focused on saturated
vaporwhile few attentionswere paid to superheated vapors.Minkowycz
and Sparrow [20,21] and Shang andWang [22] studied the laminar film
condensation of a superheated vapor on isothermal vertical surfaces
and proposed a correlation to predict the dimensionless temperature
gradient. Yang [23] and Hsu [24] developed a one-phase boundary-
layer model without considering the effect of buoyancy especially for
the natural convection film condensation.

Recently, the lattice Boltzmann method has attracted considerable
attention as an alternative approach for computational fluid dynamics,
and has shown great potentials in modeling complex fluid systems.
Lee [25] proposed a lattice Boltzmann multiphase scheme based on
the Cahn–Hilliard diffuse interface theory, which overcomes most of
the limitations which previous lattice Boltzmann models faced. Due to
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the use of potential form of the intermolecular force for non-ideal fluids
and compact isotropic discretization of this forcing term, spurious cur-
rents could be reduced to round-off and stable solutions are obtained
for density ratios up to 1:1000 for low Mach numbers.

Safari et al. [26] extended the model of Lee to simulate thermal
phase-change phenomena in two-phase fluid flows. Both liquid and
gas phases were considered to be incompressible. However, the
phase-change process was modeled by incorporating a proper source
termat thephase interface. The classical convective Cahn–Hilliard equa-
tion in the presence of phase change modified evolution equation,
whichwas employed in themultiphase LB framework of Lee. The devel-
oped model was successfully validated for a one-dimensional Stephan
problem with different density ratio up to 1:1000, and the ability of
themodel to simulate two-dimensional droplet evaporationwas tested.
Begmohammadi et al. [27] employed the phase-change model of Safari
et al. [26] to simulate nucleate pool boiling. Bubble growth on and de-
parture from superheated surface was simulated. Also, effects of densi-
ty, gravity, surface tension, contact angle and the temperature of
superheated wall on bubble departure were investigated. Their results
were in good agreement with experimental correlations.

In this article, the phase-change model of Safari et al. [26] is extend-
ed to investigate the vapor condensation, liquidfilm formation, and dew
drop sprinkling from cryogenic horizontal tube. In the present simula-
tion, the modified curved boundary treatment of Filippova and Hanel
(FH) is used, which enable curved solid walls to be treated with second
order accuracy. The results are successfully validated with previous
correlations.

2. Mathematical model

Consider classical convective Chan–Hilliard equation in the presence
of phase change and the system of two incompressible and immiscible
fluids of different bulk density (ρ1 as liquid phase density and ρg as
gas phase density). The liquid phase composition denoted by C ¼ ~ρl

ρl
is

considered as the order parameter, where ~ρl and ρl are local and bulk
densities of the liquid phase. The local averaged density (ρ) as a function
of the local densities (~ρi) is expressed as

ρ ¼ ~ρl þ ~ρg ¼ Cρl þ 1−Cð Þρg : ð1Þ

The continuity equation for component i may be written as

∂~ρi

∂t
þ ∇:ni ¼ �m

� ‴
i ¼ l; gð Þ: ð2Þ

In this equation, ni is the mass flow rate of the component i andṁ‴
expressed the volumetric source due to phase change. In the bulk re-
gion, the mass flow is only function of the volume averaged velocity of
the flow (ni ¼ ~ρiu). But in interfacial region, the mass flow is effected
by the volume diffusive flow rate besides the volume averaged velocity
of theflow (ni ¼ ~ρiu−ρi ji) [28]. Thus Eq. (2) can bewritten in termsof C
for liquid phase as

ρl
∂C
∂t

þ ρl∇: uCð Þ−ρl∇: jl ¼ −m
� ‴
: ð3Þ

And for the gas phase as

ρg
∂ 1−Cð Þ

∂t
þ ρg∇: u 1−Cð Þ½ �−ρg∇: jg ¼ m

� ‴
: ð4Þ

Since jl = − jg = j, summation of Eqs. (3) and (4) result in

∇:u ¼ m
� ‴ 1

ρg
−

1
ρl

 !
: ð5Þ

Cahn andHilliard assumed that the diffusive flow rate is proportion-
al to the gradient of chemical potential [25] and mobility ( j = M∇μ).
Continuity equation can be written as

∂C
∂t

þ ∇: uCð Þ ¼ ∇: M∇μð Þ−m
� ‴

ρl
: ð6Þ

So the total derivative of C can be written as follows:

DC
Dt

¼ eα−uð Þ � ∇C−C∇:uþ ∇: M∇μð Þ−m
� ‴

ρl
: ð7Þ

They related the mixing energy density of an isothermal system
to composition by Emix(C, ∇C) = E0(C) + k|∇C|2/2, where E0 =
βC2(1− C)2 is the bulk energy(β is a constant). The equilibrium profile
between two phasesmay be obtained byminimizing themixing energy.
This will lead to the following equation for the chemical potential μ:

μ ¼ μ0−k∇2C ð8Þ

where k is the gradient parameter, and μ0 is the classical part of the
chemical potential and is obtained by μ0= ∂E0/∂C. The Boltzmann equa-
tion in discrete form for themass transfer andmomentum equations for
a system consisting of two non-compressible fluids can be written as
follows:

D f α
Dt

¼ ∂
∂t

þ eα � ∇
� �

f α ¼ −
1
λ

f α− f eqα
� �þ 1

c2s
eα−uð Þ:FΓα : ð9Þ

In the above equation fα is the partial distribution function, eα is the
α-direction microscopic particle velocity, ρ is the mixture density, u is
the volumeaveraged velocity, cs is the speed of sound,λ is the relaxation
time, Γα= Γα(u)= fα

eq/ρ and fα
eq is the equilibrium distribution function

as follows:

f eqα ¼ tαρ 1þ eα � u
c2s

þ eα � uð Þ2
2c4s

−
u � uð Þ
2c2s

" #
ð10Þ

with tα being the weight factor determined from lattice structure. Inter-
molecular forces are calculated according to the following equation

F ¼ ∇ρc2s−∇P þ C∇μ ð11Þ

where ρcs2 is the ideal gas contribution to the pressure and p is the
dynamic pressure that enforces the incompressibility. The total pressure
is a sum of the dynamic pressure p, the thermodynamic pressure Cμ0 −
E0, and the pressure due to the inclusion of curvature−kC∇2C þ k

2 j∇Cj2.
One can impose body force on to Eq. (11) to consider its effects as

follows:

Fext ¼ g ρl−ρg

� �
ρl ≠0

0 ρl ¼ 0

(
: ð12Þ

In the above equations g indicates the gravitational acceleration.
Eq. (9) is the discrete Boltzmann equation for themass andmomentum
equations and is to be transformed into the discrete Boltzmann equa-
tion for the pressure and momentum as

gα ¼ f αc
2
s þ p−ρc2s

� �
Γα 0ð Þ ð13Þ

and the new equilibrium distribution for gα function as

g eq
α ¼ f eqα c2s þ p−ρc2s

� �
Γα 0ð Þ

¼ tα pþ ρc2s
eα � u
c2s

þ eα � uð Þ2
2c4s

−
u � uð Þ
2c2s

 !" #
ð14Þ
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