Accepted Manuscript

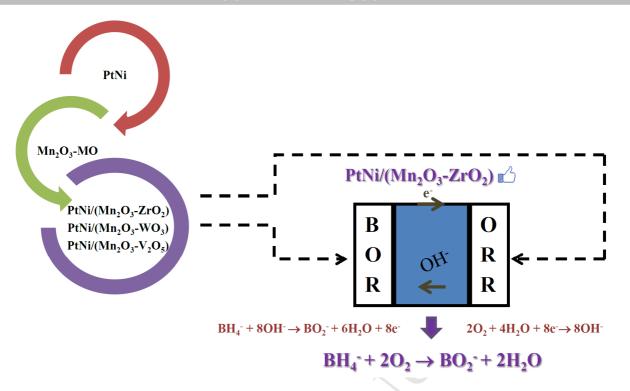
 Mn_2O_3 -MO (MO = ZrO_2 , V_2O_5 , WO₃) supported PtNi nanoparticles: Designing stable and efficient electrocatalysts for oxygen reduction and borohydride oxidation

Marta Martins, Jadranka Milikić, Biljana Šljukić, Gülin S.P. Soylu, Ayşe B. Yurtcan, Gamze Bozkurt, Diogo M.F. Santos

PII: S1387-1811(18)30397-4

DOI: 10.1016/j.micromeso.2018.07.022

Reference: MICMAT 9032


To appear in: Microporous and Mesoporous Materials

Received Date: 6 May 2018
Revised Date: 12 July 2018
Accepted Date: 13 July 2018

Please cite this article as: M. Martins, J. Milikić, B. Šljukić, Gü.S.P. Soylu, Ayş.B. Yurtcan, G. Bozkurt, D.M.F. Santos, Mn_2O_3 -MO (MO = ZrO_2 , V_2O_5 , WO₃) supported PtNi nanoparticles: Designing stable and efficient electrocatalysts for oxygen reduction and borohydride oxidation, *Microporous and Mesoporous Materials* (2018), doi: 10.1016/j.micromeso.2018.07.022.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Download English Version:

https://daneshyari.com/en/article/6531545

Download Persian Version:

https://daneshyari.com/article/6531545

<u>Daneshyari.com</u>