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A B S T R A C T

The differential pore lengths Li, the differential pore numbers Ni and the differential pore anisotropies Bi in
porous materials are estimated in a unified way and presented as a function of pore radius ri. Those parameters
can be determined from the differential specific surface area Si and the differential specific pore volume Vi

calculated via nitrogen porosimetry, assuming cylindrical pores. The differential pore length is estimated from
relation Li= Si2/Vi=Ni·li and corresponds to the total length of Ni pores with similar local length li at each pore
group of radius ri estimated at partial pressure (Pi/Po). This parameter bears similarities with the differential
pore anisotropy Bi given by Bi= Si3/Vi

2=Ni·bi where bi is the local pore anisotropy. Parameter Bi is suitable for
the ranking of pore numbers vs. pore volumes and, for isotropic cavities with bi= 1, leads to the ranking of pores
according to the Zipf's law. Parameter Li is suitable for the ranking of pore lengths as a function of pore radii and
reveals some morphometric similarities between the pore networks in solids and the branching of trees described
by the so-called allometric relations. In addition these relations may be used for the distinction of pore number
evolution via either power law or exponential mechanisms, expressed by corresponding distributions. Such
effects, observed previously by volcanologists in the vesicles of volvanic magmas in mm scale, are also observed
in the present study for random pores of nm scale in lab made materials.

1. Introduction

The pores in porous solids are usually considered as cylinders and
the methods for calculating their pore size distribution (psd) by ni-
trogen porosimetry are based on such a geometry as described in the
standard textbooks [1–3]. By the term ‘size’ the pore radius r is meant.
This parameter actually corresponds to the mean value of two ortho-
gonal radii, r1 and r2, describing the curvature of meniscus during the
filing of narrow cylindrical capillaries, which is given by the Young-
Laplace equation ΔP= γ(1/r1 + 1/r2). There are two extreme cases: (i)
Cylindrical geometry when one radius becomes very large, almost in-
finite r2 → ∞, and as a result 1/r2 → 0 and ΔP ≈ γ (1/r1). (ii) Spherical
geometry when the two radii are identical r1= r2= r and ΔP= 2γ (1/
r). Although usually r1 ≠r2, it is customary considered that the pores
exhibit rotational symmetry and their combined value amounts to (1/
r1 + 1/r2)= 1/r= 2/D. It is this value used in the Kelvin equation
r=D/2= γVm/RTln(P/Po) + t which is the basis of N2 porosimetry,
with the symbols having their customary meaning [1–3].

Nevertheless the complete description of a cylinder necessitates its
length L too, especially in the case (i) mentioned above. Then if the pore
volume V and radius r are known, its length is automatically found, e. g.

L= V/(πr2). So in a first approach there is no need for a separate es-
timation of pore lengths which are considered easily tractable. This
point has been touched briefly in one of the standard textbooks on
porous materials by Lowell et al. [2] who suggested that if the string of
values of pore volume distribution dV= f(r) is divided by the corre-
sponding cross sectional areas (πr2) the result will be the pore length
distribution function dL= f(r). As far as we know the consequences of
this observation have not been pursued.

But in a segment i of Ni similar cylindrical pores, filled at partial
pressure Pi (=Pi/Po) and exhibiting differential specific pore volume Vi,
differential specific surface area Si, pore radius (diameter) ri= 2Vi/Si
(Di= 4Vi/Si) and local (not total) pore length li, the thus calculated
differential pore length Li corresponds to the sum of lengths of all local
similar pores, e.g.

Li =Ni · li= Vi / πri2= Si2/Vi (1)

The differential pore length Li in this approach is the product of the
differential pore numbers Ni and the local pore lengths li. This in turn
poses the question of differential pore numbers. The main purpose of
this work is to search for the distribution of pore lengths and pore
numbers as a function of pore radius based on N2 porosimetry data. In
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addition, since the pore number distribution is interwoven with the
pore anisotropy distribution, we shall touch this point too. The pore
number distributions are also important in relation to vesicles formed in
solidified volcanic magmas, whose growth may follows either power or
exponential laws and related to volcanic explosions. Since the approach
to all those problems brings together various diverse points of view, we
shall review them briefly.

The pore numbers and the pore lengths. The estimation of pore
numbers and pore lengths has attracted attention in the 1960–1970′ in
relation to the gasification of carbon particles. The problem was ap-
proached by modeling the heterogeneous non-catalytic reactions be-
tween porous carbon particles and gaseous reactants, like oxygen,
carbon dioxide, water or hydrogen [4–7]. Those studies were totally
unrelated to the field of porosimetry and were more akin to chemical
engineering point of view. They deal with the estimation of pore
lengths as quantities independent of pore radii based on models of mass
transfer in combination with the experimental reaction rates. We shall
refer to a selection of them related to specific points of the present
work.

In 1973 Hashimoto and Silveston [4] proposed a model describing
the gradual development of specific surface area, specific pore volume,
porosity, mean pore radii and pore lengths of porous carbon species as a
function of the kinetically controlled gasification of carbon. They found
that the pore radii develop differently than the pore length as a function
of coal conversion. Their model introduces the total pore length L and
the constant local pore length l assumption, which means that the total
number of pores per unit mass is given by N= L/l. This point tallies to
the above relation (1).

In 1979 Simons and Finson [5] put forward another model de-
scribing the structure of porous coal char, using data from a previous
article by Berger et al. [6]. The pores were assumed to be cylindrical
tubes of length l and radius r and the pore length was shown to be
proportional to the pore radius. The model also suggests that the pore
sequence forms a ‘pore tree’ resembling an ordinary tree or a river
system. Finally the authors concluded that there is a statistical linear
distribution between log(1/r3) and the pore number density log(N). This
relation is actually an early manifestation of Zipf's law for pore ranking,
recognized 38 years later in Refs. [8,9] and reviewed bellow.

In a follow-up article [7], published the same year 1979, Simons
described a mechanistic model of pore development which includes the
engulfment of the smaller pores by the larger ones leading to depletion
of the small pores and enhanced the growth of the large pores. The
corresponding pore volume distributions demonstrate qualitative
agreement with laboratory measurements. He also mentioned that such
effects are responsible the appearance of relation (N) α (1/r3) observed
initially in [5] and much later in Refs. [8,9]. The envisaged sequence of
events for the pore development in this model is practically similar to
the models proposed much later for the development of vesiculars in
volcanic magmas we shall refer next.

More recently in 2004 Rigby and co-workers [10] made a concerted
attempt for the simultaneous determination of the pore-length dis-
tribution and pore connectivity for porous catalyst supports using in-
tegrated nitrogen sorption and mercury porosimetry. They employed
the method to determine pore connectivity and lattice size from ni-
trogen sorption data developed by Seaton and co-workers [11] where it
was assumed that the average pore lengths li are the same in each pore-
size interval. This concept is fundamental in the estimation of relation
(1). The authors in Ref. [11] assumed also that the average pore length
li is a function of the pore diameter di in the form li= k. dia where k - a
normalization factor and a - important constant to be determined. In a
striking coincidence, an almost similar power law li= ria was proposed
practically simultaneously, but totally independently, by this group in
Ref. [12] where a method for the estimation of pore anisotropy was
initially proposed.

The pore numbers in volcanic magmas and their distributions.
Another field of science exhibiting keen interest for the estimation of

pore number distribution as a function of their size is volcanology. The
aim in this case is to understand the bubble nucleation in volcanic
magmas, initiated by the exsolution of dissolved volatile gases like H2O
and CO2, and the subsequent bubble coalescence and growth which, if
extensive and fast, lead to huge and catastrophic volcanic explosions
[13–20]. For this purpose the bubble size distributions (bsd) and the
vesicular growth with time is considered of paramount importance. The
vesicles trapped either in solidified volcanic rocks, or in mimic la-
boratory experiments, are in the range of mm and practically isotropic.
So there is no point searching for pore lengths or pore anisotropy. The
methods of observation are direct and usually include optical imaging,
SEM and X-ray tomography [13–17].

In such cases a crucial point is the mechanism of bubble develop-
ment in the magma. In the relevant geological literature there are two
main approaches [16–19] describing the bsd either in the form N= f
(V), or N= f (r), where N-the bubble density (mm−1), V∼ r3 - the
bubble volume (mm3) and r-the bubble radius (mm): The exponential
distribution [20–22] and the power law distribution [13,23–25].

The exponential distribution has the form

N=No exp (-r/Gτ) (2)

where (Gτ)- a product of the average unknown bubble steady growth
rate (G), (τ)- the average crystal growth time and (No)- the nucleation
density for r→0. Relationship (2) stems its origin from a model pro-
posed by Randolph and Larson in 1971 in relation to industrial crys-
tallization processes based on the classical balance
Creation + Input = Annihilation + Output [20]. The model was
adapted by Marsh in 1988 to describe the development of crystal size
distribution in rocks [21] and then applied by various authors for the
description of bubble size distribution in volcanic magmas or lab mi-
mics [14–18,22]. If this distribution upholds, then plots of the form log
(N)= f(r) should provide straight lines with slope (-1/Gτ) and inter-
cept log(N0).

The second approach is the power law distribution which reads

N≈ 1/V B (3)

where B- an exponent to be define. This theory was introduced in 1996
by Gaonac'h et al. [13,23] and expanded a few years later by Lovejoy
et al. [24,25]. Its basic assumption is that small bubbles, generated from
the magma, are gradually diffused and jointed each other in a cascading
series of events. At each generation two smaller bubbles merge into a
single larger one of increase size and so on.

Eventually there will be a percolation limit where an infinite bubble
occupies the whole section of the reservoir and, if the sequence of
events is fast enough, the system is driven to explosion. The model
predicts two regimes: For small bubbles, the rate determining step (rds)
is considered the bubble diffusion, and then the exponent B=1. For
medium to large bubbles the rds is their coalescence and then B≠1. If
this distribution upholds, then plots log(N)= f (log(V)) should provide
straight lines with slope (-B).

The above are considered the main mechanisms controlling the pore
development. Nevertheless during such processes, multiple vesiculation
events may occur simultaneously and overprint each other, like mul-
tiple nucleation and growth, coalescence, ripening and collapse [19].
Therefore the relevant results and plots call for ‘interpretative pru-
dence’ [19] but in any case the two main approaches constitute a good
basis for comparison.

The differential pore anisotropy and the pore numbers. A method
of estimation of Differential Pore Anisotropy Distribution was proposed
recently for pores in the size of nm based on N2 porosimetry [8,9]. This
property, which is interwoven with the pore numbers, was symbolized
as (bdiff) in Refs. [8,9] but will be designated in the next as Bi (≡bdiff) to
facilitate symbolization.

Briefly, parameter Bi can be determined from the dimensionless
ratio [Si3]/[Vi

2] between the cube of differential specific surface area Si
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