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Two approaches tomodelling the heating of evaporating droplets have beenwidely used in engineering applica-
tions. In the first approach the heat rate supplied to the droplets to raise their temperatures, q̇d, is derived from
the requirement that droplet evaporation rates, inferred from steady-state equations for mass and heat balance,
should be the same. The second approach is based on the direct calculation of the distribution of temperature
inside droplets assuming that their thermal conductivity is not infinitely large. The implications of these two ap-
proaches are compared for the case of stationary droplets in conditions relevant to Diesel engines. It is pointed
out that although the trends of time evolution of q̇d predicted by both approaches are similar, actual values of
q̇d predicted by these approaches can be visibly different. This difference can lead to noticeable differences in
predicted droplet surface temperatures, radii and evaporation times. Possible reasons for these differences are
discussed.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Since the pioneering publications by Spalding (see [1]), the evapora-
tion rate of stationary droplets ṁd has been estimated based on the
following well known equation [2,3]:

ṁd ¼ −4πRdDvρtotal ln 1þ BMð Þ; ð1Þ

where

BM ¼ ρvs−ρv∞
ρgs

ð2Þ

is the Spalding mass transfer number, ρvs and ρv ∞ are densities of va-
pour in the vicinity of droplet surfaces and at a large distance from
them, ρg is the density of the ambient gas (air), Rd is the droplet radius,
Dv is the diffusion coefficient of vapour in gas, and ρtotal= ρg+ ρv is the
total density of the mixture of vapour and gas. Note that ṁd≤0.

The derivation of Expression (1) was based on a number of assump-
tions, perhaps one of the most important of which is the assumption
that ρtotal= const and does not dependon thedistance from the droplet
surface. This assumption can be justified when the temperature of the
droplet is low and the difference between gas and droplet surface
temperature is small (slow evaporation). In practical engineering appli-
cations, however, these restrictions of the range of applicability of Ex-
pression (1) are commonly ignored (e.g. [4]). Note that Expression (1)

cannot be used when the droplet surface temperature approaches boil-
ing temperaturewhen ρgs=0 and BM becomes infinitely large (e.g. [5]).

Amore rigorous approach to the analysis of droplet evaporationwas
presented by Tonini and Cossali [6,7]. In themodel suggested and devel-
oped in these papers, the requirement that ρtotal = const was relaxed.
The species, momentum and energy conservation equations were
solved in a radial coordinate system, accounting explicitly for the gas
density dependence on temperature and vapour concentration. Howev-
er, as in the case of Expression (1), the problemwas solved based on the
quasi-steady state approximation (terms proportional to partial time
derivatives were ignored in all equations) and the droplet surface tem-
perature was assumed to be fixed during any time step. The effects of
temperature gradient inside droplets were ignored (their thermal con-
ductivity was assumed to be infinitely large).

An alternative expression for ṁd was obtained based on the analysis
of the heat balance equation. Assuming that the evaporating droplet is
stationary, as in the case of Expression (1), this equation for an arbitrary
distance R N Rd from the centre of the droplet can be presented in the
form [8]:

4πR2kg
dT
dR

¼ −ṁdcpv T−Tsð Þ−ṁdL Tsð Þ þ q̇d; ð3Þ

where kg, cpv and L(Ts) are gas thermal conductivity, vapour specific heat
capacity at constant pressure and specific heat of evaporation at the
droplet surface temperature Ts. As in Expression (1), ṁd≤0. The left
hand side of this equation shows the heat supplied from the surround-
ing gas to the droplet. The first term on the right hand side shows the
heat required to heat fuel vapour from Ts to T= T(R) (gas temperature
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at the distance R from the centre of the droplet). The second and third
terms on the right hand side show the heat spent on droplet evapora-
tion and raising its temperature (when q̇d N 0) respectively.

Rearranging this equation and its integration from T = Ts to T = Tg
(ambient gas temperature) and from R = Rd to R = ∞, assuming that
the temperature dependence of kg and cpv can be ignored, gives [8]:

ṁd ¼ −
4πkgRd

cpv
ln 1þ BTð Þ; ð4Þ

where

BT ¼
cpv Tg−Ts

� �
L Tsð Þ− q̇d=ṁdÞ

� ð5Þ

is the Spalding heat transfer number. From Eqs. (1) and (4) follows the
relation between BT and BM [8]:

BT ¼ 1þ BMð Þφ−1; ð6Þ

where

φ ¼ cpv
cpg

 !
1
Le

; ð7Þ

Le = kg/(cpgDvgρtotal) is the Lewis number.

Eq. (5) can be rewritten as:

q̇d ¼ −ṁd

cpv Tg−Ts

� �
BT

−L Tsð Þ
24 35 ¼ −ṁd

cpv Tg−Ts

� �
1þ BMð Þφ−1

−L Tsð Þ
24 35: ð8Þ

Since the pioneering paper by Abramzon and Sirignano [8], Expres-
sion (8) has been widely used for modelling the heating of evaporating
droplets. The assumptions on which the derivation of this expression
was based (e.g. the validity of Expression (1)) have been almost univer-
sally ignored. An obvious limitation of Expression (8) is that the value of
q̇d is not affected by the thermal conductivity of liquid, which contradicts
the physical nature of q̇d, as discussed later in the paper.

An alternative approach to the calculation of q̇d could be based on the
analysis of temperature distribution inside droplets, inferred from the
direct analysis of convective heating of evaporating droplets (see [2]
for the details). This approach is restricted to the case when liquid ther-
mal conductivity is finite, which can be expected for any realistic liquid.

The focus of this paper is on the comparison of these two approaches
to the calculation of q̇d and their implications for the modelling of drop-
let heating and evaporation in conditions typical for Diesel engines. The
analysis is focused on stationary droplets, although it can be easily gen-
eralised to the case of moving droplets, using the effective thermal con-
ductivity (ETC) model (see [2,3]).

2. Model

Assuming that the convection heat transfer coefficient h = const,
the solution to the heat conduction equation inside droplets, assuming
that all processes are spherically symmetric, can be presented as [2,3]:

T R; tð Þ ¼ Rd

R

X∞
n¼1

n
qn exp −κRλ

2
nt

h i
− sinλn

jjvnjj2λ2
n
μ0 0ð Þ exp −κRλ

2
nt

h i
− sinλn

jjvnjj2λ2
n

Z t

0

dμ0 τð Þ
dτ

exp −κRλ
2
n t−τð Þ

h i
dτ
o
sin λn

R
Rd

� �� �
þ Teff tð Þ;

ð9Þ

where λn values are solutions to the equation:

λ cosλþ h0 sinλ ¼ 0; ð10Þ

jjvnjj2 ¼ 1
2

1− sin2λn

2λn

� �
¼ 1

2
1þ h0

h20 þ λ2
n

 !
;

qn ¼ 1
Rdjjvnjj2

Z Rd

0

eT0 Rð Þ sin λn
R
Rd

� �� �
dR; κR ¼ kl

clρlR
2
d

; μ0 tð Þ ¼ hTg tð ÞRd

kl
;

h0= (hRd/kl)− 1andeT0 Rð Þ ¼ RTd0 Rð Þ=Rd. The solution to Eq. (10) gives a
set of positive eigenvalues λn numbered in ascending order (n=1, 2,…),

Teff ¼ Tg þ
ρlLṘde

h
; Ṙde ¼ ṁd

4πR2
dρl

;

whereρl is the liquiddensity, andh for stationary evaporating droplets can
be estimated as [2]:

h ¼ 2kg
Rd

ln 1þ BTð Þ
BT

; ð11Þ

where BT is defined by Eq. (5).
The rate of droplet heating, leading to the rise of their temperatures,

can be estimated as

q̇d ¼ 4πR2
dkl

∂T
∂R
			
R¼Rd−0

ð12Þ

where q̇dN0 when the droplet is heated.

Nomenclature

BM Spalding mass transfer number
BT Spalding heat transfer number
c specific heat capacity
Dv binary diffusion coefficient of vapour in air
h convection heat transfer coefficient
h0 parameter introduced in Expression (9)
k thermal conductivity
L latent heat of evaporation
Le Lewis number
ṁd evaporation rate
q̇d heat rate
qn parameter introduced in Expression (9)
R distance from the droplet centre
Rd droplet radius
t time
T temperature

Greek symbols
κR parameter introduced in Expression (9)
λ parameter defined by Eq. (10)
μ0 parameter introduced in Expression (9)
ρ density
φ parameter defined by Eq. (7)

Subscripts
d droplet
e evaporation
eff effective
g gas
p constant pressure
s surface
v vapour
∞ at a large distance from the droplet
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