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Thiswork presents a Crank–Nicolson extrapolation scheme for the two-dimensional time-dependent conduction–
convection equations. Mixed finite element method is applied for the spatial approximation of the velocity,
pressure and temperature. The time discretization is based on the Crank–Nicolson scheme for the linear term
and semi-implicit scheme for the nonlinear term. Moreover, the stability analysis and error estimations are
derived. Finally, numerical tests confirm the theoretical results of the presented method and show the efficient
method conserves the property of divergence free of the original equations to some extent.
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1. Introduction

The nonstationary conduction–convection problems constitute an
important system of equations in atmospheric dynamics and a dissipa-
tive nonlinear system of equations. Since this system of equations does
not only contain the velocity field as well as the pressure field but also
contain the temperature field, finding the numerical solutions of this
problem is a difficult task. Thus, development of an efficient computa-
tional method for investigating this problem has practical significance,
and has drawn the attention ofmany researchers. At the time ofwriting,
there are numerous works devoted to the development of efficient
schemes for the conduction–convection equations [1–8].

In general, there exist fully implicit, semi-implicit (semi-explicit), and
explicit scheme to deal with the time-dependent problems. Among
them, high-order schemes are of more interest because first-order
schemes are not sufficiently accurate for large time approximations.

Meanwhile, the stability condition of schemes is also a key issue. Usually
an explicit scheme ismuch easier in computation. But it suffers a severely
restricted time step size from stability requirement. A fully implicit
scheme is (almost) unconditionally stable. However, at each time step,
one has to solve a system of nonlinear equations. Hence, a popular
approach is based on an implicit scheme for the linear term and a
semi-implicit scheme or an explicit scheme for the nonlinear term. A
semi-implicit scheme for the nonlinear term results in a linear system
with a variable coefficient matrix of time, and an explicit treatment for
the nonlinear term gives a constant matrix.

Especially, the well known Crank–Nicolson extrapolation scheme is
one of these approaches. Moreover, the scheme is a second-order accu-
racy which is based on the Crank–Nicolson scheme and is very popular
to deal with the nonstationary equations. Currently, the Crank–Nicolson
extrapolation scheme is applied to the timediscretization of theNavier–
Stokes equations by Girault and Raviart [9] and Simo and Armero [10].
Also, the Crank–Nicolson extrapolation scheme is applied to the time
discretization of the nonlinear parabolic equations (see Douglas and
Dupont [11], Cannon and Lin [12], and Lin [13]) and the nonlinear
dynamics (see Simo, Tarnow, and Wong [14]). Moreover, He and Sun
[15] have provided an error analysis for the Crank–Nicolson extrapola-
tion scheme of time discretization applied to the spatially discrete
stabilized finite element approximation of the two-dimensional time-
dependent Navier–Stokes problem, and the low-order finite element
have been applied.

This article focuses on the Crank–Nicolson extrapolation scheme for
the two-dimensional nonstationary conduction–convection equations.
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The second-order fully discrete scheme is based on the Crank–Nicolson
extrapolation scheme, in which we use an implicit scheme for the vis-
cous and pressure terms and a semi-implicit scheme for the nonlinear
term. Mixed finite element method (e.g. P2-P1-P1, P1b-P1-P1, etc.) is
applied for the spatial approximation of the velocity, pressure and
temperature. Then the numerical results illustrated the efficiency of
the proposed scheme and in a way the scheme guarantees the property
of solenoidal vector field for the original problem.

The remainder of this paper is organized as follows. In Section 2,
we introduce the notations, an abstract functional setting of the
conduction–convection problem. Mixed finite element strategy is
recalled and some well-known results are used throughout this paper in
Section 3. Second-order fully discrete method based on Crank–Nicolson
extrapolation scheme is given in Section 4. Then in Section 5, numerical
experiments are shown to verify the theoretical results completely.
Finally, we end with a short conclusion in Section 6.

2. Preliminaries

Let Ω be a bounded, convex and open subset of ℝ2 with a Lipschitz
continuous boundary ∂Ω. We consider the time-dependent conduction–
convection equations:

ut−νΔuþ u �∇ð Þuþ∇p ¼ λ jT ; in Ω� 0;T1ð �;
∇ � u ¼ 0; in Ω� 0;T1ð �;
Tt−ΔT þ λu �∇T ¼ 0; in Ω� 0;T1ð �;
u x;0ð Þ ¼ 0; T x;0ð Þ ¼ 0; on Ω� 0f g;
u ¼ 0; T ¼ T0 in ∂Ω� 0;T1ð �;

8>>>><
>>>>:

ð1Þ

where u = (u1(x, t), u2(x, t)) represents the velocity vector, p = p(x,t)
the pressure, T = T(x,t) the temperature, λ N 0 the Grashoff number,
j = (0, 1)T the two-dimensional vector, ν N 0 the viscosity, T1 the given
final time and ut = ∂u/∂t, Tt = ∂T/∂t.

With the standard Sobolev spaces

X ¼ H1
0 Ωð Þ

� �2
; W ¼ H1 Ωð Þ; W0 ¼ H1

0 Ωð Þ;

M ¼ L20 Ωð Þ ¼ q∈ L2 Ωð Þ :
Z
Ω
qdx ¼ 0

� �
;

a weak formulation of Eq. (1) reads: find (u, p, T)∈ (X,M,W) for all t∈
(0, T1) such that for all (v, q, s) ∈ (X, M, W0) and T|∂Ω = T0,

ut ; vð Þ þ B u;pð Þ; v; qð Þð Þ þ b u;u; vð Þ ¼ λ jT; vð Þ;
Tt ; sð Þ þ a T; sð Þ þ λb u; T ; sð Þ ¼ 0;
u x;0ð Þ ¼ 0; T x;0ð Þ ¼ 0;

8<
: ð2Þ

with

a u; vð Þ ¼ ν ∇u;∇vð Þ; d v; qð Þ ¼ q;divvð Þ; a T ; sð Þ ¼ ∇T ;∇sð Þ;
b u; v;wð Þ ¼ u �∇ð Þv;wð Þ þ 1

2
divuð Þw; vð Þ ¼ 1

2
u �∇ð Þv;wð Þ−1

2
u �∇ð Þw; vð Þ;

b u; T ; sð Þ ¼ u �∇ð ÞT ; sð Þ þ 1
2

divuð ÞT ; sð Þ ¼ 1
2

u �∇ð ÞT ; sð Þ−1
2

u �∇ð Þs; Tð Þ;
B u;pð Þ; v; qð Þð Þ ¼ a u; vð Þ−d v; pð Þ þ d u; qð Þ:

The trilinear forms b(⋅;⋅,⋅) and b �; �; �ð Þ satisfy

b u; v;wð Þj j≤N ∇uk k0 ∇vk k0 ∇wk k0; ∀u; v;w∈ X;

b u; T ; sð Þ
��� ���≤N ∇uk k0 ∇Tk k0 ∇sk k0; ∀ u; T; sð Þ∈ X;W;Wð Þ; ð3Þ

where

N ¼ sup
u;v;w∈X

b u; v;wð Þj j
∇uk k0 ∇vk k0 ∇wk k0

; N ¼ sup
u∈X;T;s∈W

b u; T ; sð Þ
��� ���

∇uk k0 ∇Tk k0 ∇sk k0
:

3. Mixed finite element method

For h N 0, we introduce finite-dimensional subspaces (Xh, Mh,
Wh) ⊂ (X, M, W) which are characterized by Kh, a partitioning of Ω
into triangle K with the mesh size h, assumed to be uniformly regular
in the usual sense. We also defineW0h = Wh ⋂ W0. For further details,
readers can refer to Ciarlet [16]. Subsequently, c (with or without a
subscript) will denote a generic positive constant.

The standard finite element Galerkin approximation of Eq. (2) based
on (Xh, Mh, Wh) reads as follows: find (uh, ph, Th) ∈ (Xh, Mh, Wh) such
that, for all 0 ≤ t ≤ T1, Th|∂Ω = Th

0 (Th0 is the interpolation of T 0) and
(vh, qh, sh) ∈ (Xh, Mh, W0h),

uht ; vhð Þ þ B uh;phð Þ; vh; qhð Þð Þ þ b uh;uh; vhð Þ ¼ λ jTh; vhð Þ;
Tht ; shð Þ þ a Th; shð Þ þ λb uh; Th; shð Þ ¼ 0;
uh x;0ð Þ ¼ 0; Th x;0ð Þ ¼ 0:

8<
: ð4Þ

Then, we define the subspace Vh of Xh given by

Vh ¼ vh∈Xh : d vh; qhð Þ ¼ 0;∀qh∈Mhf g:

Weknow from [17] that the pair (Xh,Mh) and Vh satisfy the following
approximation properties:

Lemma 3.1. Let Ih : L2(Ω)2 → Vh be the standard L2-projection. Then

v−Ihvk k0;Ω þ h ∇ v−Ihvð Þk k0;Ω≤chi vk ki;Ω; ∀v∈Hi Ωð Þ∩V0; ð5Þ

for i = 1,2,3, with V0 = {v ∈ H0
1(Ω);∇ ⋅ v = 0}.

Purely for some subspace analysis, we shall often make use of the
approximate divergence-free finite element space V0h:

V0h ¼ vh∈Vh; divvh; qhð Þ ¼ 0;∀qh∈Mhf g:

From the results of [8,16,17], the pair (Xh,Mh,Wh) and V0h satisfy the
following properties:

P(A). For each v∈Hi(Ω)∩H0
1(Ω) with∇ ⋅ v=0 and q∈Hi − 1∩ L0

2(Ω)
with i = 1,2,3, there exist approximations πhv ∈ V0h and
ρhq ∈ Mh such that

∇ v−πhvð Þk k0≤chi−1 vk ki; q−ρhqk k0≤chi−1 qk ki−1:

P(B). There exists rh: W → Wh, such that for all φ

∇ φ−rhφð Þ;∇φhð Þ ¼ 0; ∀φh∈Wh;Z
Ω
φ−rhφð Þdx ¼ 0; ∇rhφk k0≤ ∇φk k0;

and that when φ ∈ Wr,q(Ω)(1 ≤ q ≤ ∞), have

φ−rhφk k−s;q≤chrþs φj jr;q; −1≤s≤m;0≤r≤mþ 1: ð6Þ

P(C). The inverse inequality:

∇vhk k0≤ch−1 vhk k0; ∀vh∈Xh:

P(D). For each qh ∈ Xh, there exists vh ∈ Xh, vh ≠ 0 such that

d vh; qhð Þ≥β qhk k0 ∇vhk k0;

here β is a positive constant depending only on Ω.

Then, we need a further assumption on T0 proved in [8].
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