Contents lists available at ScienceDirect

Microporous and Mesoporous Materials

journal homepage: www.elsevier.com/locate/micromeso

Improved performance of Al-doped $LiMn_2O_4$ ion-sieves for Li^+ adsorption

Minmin Chen, Ruyun Wu, Shengui Ju*, Xiaoxian Zhang, Feng Xue**, Weihong Xing

College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, People's Republic of China

ARTICLE INFO

Keywords: Al-doped Hydrothermal synthesis Lithium ion-sieves Dissolution loss Adsorption

ABSTRACT

Al-doped LiAl_xMn_{2-x}O₄ ion-sieves were optimally synthesized with improved structural stability for Li⁺ adsorption through hydrothermal synthesis method. Firstly, several parameters including the Al³⁺ doping content x, hydrothermal temperature, hydrothermal treatment time and calcination temperature were investigated to optimize the synthesis of LiAl_xMn_{2-x}O₄ ion-sieves for selecting unique spinel structure with low dissolution loss (*R*) for Li⁺ adsorption. Then, the pristine LiMn₂O₄ (LMO) and optimized LiAl_{0.1}Mn_{1.9}O₄ (LAMO) ion-sieves were comparatively investigated from their microstructure and chemical state to Li⁺ adsorption performance. The desorption ratio of Li⁺, adsorption capacity (*Q*) and the dissolution losses (*R*_{Mn}²⁺ and *R*_{Al}³⁺) of the ion-sieves were evaluated by adsorption-desorption experiments. It was found that the maximum equilibrium adsorption capacity *Q*_{LAMO} was 27.66 mg g⁻¹ and the desorption ratio of Li⁺ could reach 81.2% after 120 min. Meanwhile, *R*_{Mn}²⁺ and *R*_{Al}³⁺ of LAMO ion-sieve were very low in the desorption process. Moreover, LAMO ion-sieve also shows excellent stability and repeatability that the LAMO could still maintain a high adsorption capacity (19.5 mg g⁻¹) with very low *R*_{Mn}²⁺ (3.71%) and negligible *R*_{Al}³⁺ after repeating 5 times adsoprtion-desorption operation.

1. Introduction

Lithium is the lightest element in nature and extraction of lithium from Li-containing ores and salt lakes is of great importance for the wide range of its applications such as ceramics, pharmaceuticals, rechargeable batteries and other related fields [1–3]. China is abundant in lithium reserves where 13% of the world's lithium resources existed. However, about 85% of lithium resources are stored in salt lakes existing as brine lithium. With the increasing demand of lithium usage, especially lithium-ion batteries for electronic products and electric vehicles [4,5], thus, the technologies to achieve the extraction and recovery of lithium in salt lakes is keen to be developed.

In recent years, more and more researchers have paid their attention to the direction of lithium extraction. Up to date, approaches including but not limited to solvent extraction, chemical precipitation and lithium ion-sieves adsorption have been extensively attempted. Among them, solvent extraction is less used one due to its high cost and the high toxicity of organic solvents. Chemical precipitation is used more frequently, but it is only used for high capacity of Li⁺ or low ratio of Mg/ Li of brine [6]. Because of the high selectivity, structural stability, low cost and good adsorption performance, lithium ion-sieves adsorption has been considered as a promising lithium extraction method [7,8]. Spinel-type lithium manganese oxides with various Li/Mn molar ratios such as Li_{1.6}Mn_{1.6}O₄ [9–13], Li₄Mn₅O₁₂ [14–18] and LiMn₂O₄ [19,20], have been widely studied as adsorbents for Li⁺ recovery. Among these Li ion-sieves, LiMn₂O₄ shows relatively excellent selectivity and capacity in the adsorption of Li⁺ combined with the use of acid. However, the real Li⁺ adsorption capacity of LiMn₂O₄ is less than its theoretical adsorption capacity. This is due to the fact that the average valence of Mn in $LiMn_2O_4$ is +3.5 resulting in the Jahn-Teller effect [21] that the dissolution loss of Mn^{2+} in the desorption process is severe [22,23]. In order to overcome these drawbacks, various methods such as volumetric doping and surface modification for LiMn₂O₄ have been developed which are effective in reducing the dissolution loss of Mn^{2+} and improving cycling ability. For the dopants, some of the inert metal cations (M), such as Co, Cd, Ni, Mg, Li, Zn, can form M-O bond with O, and its bond energy is larger than that of Mn-O bond, which can improve the structural stability. Besides, these doping metals can increase the average valence state of Mn, decrease the content of Mn³⁺, suppress the Jahn-Teller effect and reduce the dissolution loss of Mn^{2+} . Al has good potential for doping in addition to above-mentioned dopants owing to its low weight and structural stability. Moreover, the radius of Al^{3+} (0.57 Å) is very close to that of Mn^{3+} (0.66 Å) and the bond energy of Al-O bond is larger than that of Mn-O bond [24]. Hence, some efforts have been made for synthesis of Al-doped spinel-type lithium manganese oxides. Sun et al. [25] successfully synthesized

http://dx.doi.org/10.1016/j.micromeso.2017.10.058

^{*} Corresponding author.

^{**} Corresponding author.

E-mail addresses: jushengui@njtech.edu.cn (S. Ju), xuefeng@njtech.edu.cn (F. Xue).

Received 3 September 2017; Received in revised form 14 October 2017; Accepted 30 October 2017 1387-1811/ © 2017 Elsevier Inc. All rights reserved.

Li_{1.03}Al_{0.2}Mn_{1.8}O_{3.96}S_{0.04} ion-sieve by using sol-gel method and based upon template method. Li et al. [26] used polymethyl methacrylate (PMMA) as the template and prepared a porous LiAl_{0.1}Mn_{1.9}O₄ (P-LAMO) ion-sieve. In addition, Yu et al. [27] grinded stoichiometric LiCO₃, MnO₂ and Al₂O₃ to prepare Li_{1+x}Mn_{2-x-y}Al_yO₄ with high-temperature solid-state method. The success in the preparation of LiAl_xMn_{2-x}O₄ by different methods indicates that Al³⁺ can be embedded into the framework of LiMn₂O₄ under certain conditions. Therefore, the LiAl_xMn_{2-x}O₄ composite ion-sieve with a high adsorption capacity and low dissolution loss could be concerned. Furthermore, an efficient and environmental friendly synthesis of LiAlxMn₂-xO₄ composite ion-sieves is required for the Li⁺ adsorption.

In this study, a series of Al-doped LiMn₂O₄ ion-sieves were prepared by hydrothermal synthesis method using LiOH·H₂O as lithium source, co-precipitated with Mn(NO₃)₂ and AlCl₃6H₂O. We first optimized several parameters in the procedure of synthesizing LiAl_xMn_{2-x}O₄ ionsieves to determine the best LiAl_xMn_{2-x}O₄ ion-sieve for Li⁺ adsorption, including the Al³⁺ doping content x, hydrothermal temperature, hydrothermal treatment time and calcination temperature. Then the pristine LiMn₂O₄ and the optimal ion-sieves were further studied and their microstructure and stability in Li⁺ adsorption process were comparatively investigated. Importantly, the structural stability of asprepared ion-sieves were significantly improved, which make the spinel-typed ion-sieves promising for Li⁺ recovery from salt lake.

2. Experimental

2.1. Materials

The manganese nitrate (50% solution), aluminum chloride hexahydrate, lithium hydroxide monohydrate, hydrogen peroxide (30%) and ammonia hydroxide were purchased from the Sinopharm Chemical Reagent Co., Ltd. All of these chemicals are used in analytical grade without further purification.

2.2. Synthesis and characterization of LiAl_xMn_{2-x}O₄ composite ion-sieves

Fig. 1 schematically illustrates the procedure of synthesis of $\rm LiAl_xMn_{2-x}O_4$ ion-sieves. The reaction occurred, as shown in eq. (1):

$$H_2O_2 + LiOH + AlCl_3 + Mn(NO_3)_2 \rightarrow LiAl_xMn_{2-x}O_4 + LiNO_3 + H_2O$$
(1)

LiAl_xMn_{2-x}O₄ ion-sieve was synthesized with H₂O₂ as oxidant, LiOH

Fig. 1. Illustration of the synthetic route of LAMO ion-sieves.

 Table 1

 The synthetic details of LMO and LAMO ion-sieves.

Name	x	LiOH·H ₂ O (g)	Mn (NO ₃) ₂ solution (g)	AlCl ₃ ·6H ₂ O (g)	H ₂ O ₂ (mL)
LMO	0	2.31	6.44	0	1.5
LAMO	0.1	2.31	6.12	0.22	1.5

as lithium resource, co-precipitation of $AlCl_3$ and $Mn(NO_3)_2$ as aluminum resource and manganese resource.

The optimization of synthesis and characterization of LiAl_xMn_{2-x}O₄ ion-sieves could be found in supporting information. Several parameters including the Al³⁺ doping content x, hydrothermal temperature, hydrothermal treatment time and calcination temperature were systematically investigated to optimize the spinel structure and dissolution loss of LiAl_xMn_{2-x}O₄ ion-sieves for further Li⁺ adsorption application. It is found the as-prepared LiAl_{0.1}Mn_{1.9}O₄ (LAMO) ion-sieve shows the best performance for Li⁺ adsorption.

Briefly, 0.4 M Mn (NO₃) ₂ and AlCl₃·6H₂O in a molar ratio of n (Mn²⁺: Al³⁺) = 1.9: 0.1 were dissolved in deionized water under continuously stirring, then the solution of LiOH·H₂O (1.1M) in a molar ratio of n (Li⁺: Mn²⁺) = 3: 1 and 30% H₂O₂ were slowly dropped into the mixed solution simultaneously within 15 min, which was shown in Table 1. After that, the reaction was lasted for 180 min and then the suspension was transferred to the autoclave for hydrothermal reaction at 170 °C for 10 h. Subsequently, the resulted black product was filtered, washed and dried at 100 °C for 6 h. The black powder was finally calcined at 700 °C for 10 h to obtain LAMO ion-sieve in a tube furnace. As a control experiment, the pristine LiMn₂O₄ (LMO) ion-sieve was prepared via the similar procedure without Al doping.

The spinel structure of the LMO and LAMO ion-sieves were analyzed by X-ray diffraction (XRD, D8-ADVANCED, Germany BRUKER), which was carried out with a Rigaku diffractometer using Cu K α radiation. The lattice constants of above samples were fitted through Jade software. The morphological characteristics of samples were analyzed by scanning electron microscope (SEM, ITACHI-4800) and High Resolution Transmission Electron Microscope (HRTEM, JEOL-2100F). An X-ray photoelectron spectroscopy (XPS, Thermo Fisher, ESCALAB 250xi) was used to confirm the chemical state of the as-prepared LMO and LAMO ion-sieves.

For determining the chemical formula of LMO and LAMO ion-sieves, 0.1 g LMO and LAMO samples were first added to the mixture solution of 0.5 M HCl and H_2O_2 under continuously stirring, respectively. The supernatants were collected after dissolution completely, and then they were filtered using a syringe filter with a pore size of 0.2 µm. The obtained filtrates were used for analysis. Table 2 lists the actual chemical formula of LMO and LAMO which were determined by inductive coupled plasma optical emission spectrometer (ICP-OES, Optima7000DV, Perkin Elmer, USA).

2.3. Adsorption stability of LMO and LAMO ion-sieves

2.3.1. Dissolution loss R of Mn²⁺ and Al³⁺ in LAMO ion-sieves Typically, LAMO ion-sieves were delithiated by adding 0.5 g powders into a 500 mL of HCl solution (0.1 M) under continuously stirring.

Table 2				
The actual cher	nical formula	of LMO and	LAMO	ion-sieves.

Name	Metal ion concentration (mg·L ⁻¹)			Molar ratio Formula	
	Li ⁺	Al ³⁺	Mn ²⁺	Li:Al:Mn	_
LMO LAMO	16.05 12.01	/ 4.908	253.7 179.5	2.293:4.613(Li:Mn) 1.716:0.182:3.265	LiMn _{2.01} O ₄ LiAl _{0.106} Mn _{1.902} O ₄

Table 0

Download English Version:

https://daneshyari.com/en/article/6532273

Download Persian Version:

https://daneshyari.com/article/6532273

Daneshyari.com