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The work discusses nonlinear Rayleigh–Taylor instability of the interface between two viscous, incompressible
and thermally conducting fluids in a fully saturated porous medium, when the phases are enclosed between
two horizontal cylindrical surfaces coaxial with the interface, and when there is mass and heat transfer across
the interface. We use viscous potential flow theory in which the flow is assumed to be irrotational and viscosity
enters through normal viscous stresses at the interface. The perturbation analysis, in the light of themultiple ex-
pansions in both space and time, leads to imposing thewell-known Ginzburg–Landau equation. The various sta-
bility conditions are discussed both analytically and numerically. The results are displayed inmanyplots showing
the stability criteria in various parameter planes. It is observed that heat and mass transfer has stabilizing effect
on the stability of the considered systemwhilemedium porosity destabilizes the interface. The flow through po-
rous media is more stable than the pure flow.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the researchers show a great interest on the fluid
flow through porous medium due to its importance in various fields
such as in thefields of agriculture engineering to study the underground
water resources, seepage of water in river beds and in petroleum tech-
nology. The Darcy's law relates the movement of fluid to the pressure
gradients acting on a parcel of fluid. Sunil and Sharma [1] studied the
Rayleigh–Taylor instability of partially ionized plasma in a porousmedi-
um in the presence of a variable horizontal magnetic field and uniform
vertical rotation. They found that themediumpermeability and rotation
do not have any qualitative effect on the nature of the stability. Allah [2]
considered the Rayleigh–Taylor instability of two fluids with exponen-
tial densities through porous media. El-Dib [3] investigated the nonlin-
ear hydro-magnetic Rayleigh–Taylor stability of two viscous fluids in a
porous medium and observed that the medium permeability plays a
dual role in the stability analysis.

The instability of fluid flows in the presence of heat and mass trans-
fer has been considered by many investigators because heat and mass
transfer phenomena are encountered in a wide variety of engineering
applications such as boiling heat transfer and geophysical problems.
The effect of heat and mass transfer on the stability of the interface be-
tween two inviscid and incompressible fluids has been extensively

studied in the past, and among the published studies are Hsieh [4,5]
and Ho [6]. Khodaparast et al. [7] studied the linear stability analysis
of a liquid–vapor interface but they considered liquid as viscous and
motionless while vapor was inviscid moving with a horizontal velocity.

Awasthi and Agrawal [8] investigated the heat andmass transfer ef-
fects on the Rayleigh–Taylor instability of two viscous fluids and found
that mass transfer effect stabilizes the interface. The heat transfer effect
on the Kelvin–Helmholtz instability of miscible fluids using viscous po-
tential flow theory was made by Asthana and Agrawal [9]. They ob-
served that the heat and mass transfer has a strong stabilizing effect
when the lower fluid is highly viscous and a weak destabilizing effect
when the fluid's viscosity is low. Kim et al. [10] studied the capillary in-
stability including the effect of interfacial heat and mass transfer and
noted that the interfacial heat and mass transfer phenomenon resists
the growth of disturbance waves.

The linear stability of fluid flows through porous media in the pres-
ence of heat and mass transfer using viscous potential flow theory has
also been investigated by some authors in the recent years. Allah [11]
considered the effect of porous medium on the interfacial instability
with heat and mass transfer. The effect of porous medium on the capil-
lary instability in the presence of heat andmass transfer was investigat-
ed by Awasthi and Asthana [12]. They found that unlike Kelvin–
Helmholtz instability, porous medium plays a stabilizing role in the sta-
bility criterion.

The uniform model based on the linear theory is inadequate to ex-
plain the mechanism involved in the stability analysis because in this
theory, second and higher order terms of perturbed quantities are
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neglected and therefore, the nonlinear theory is needed to study the
mechanism behind the instability. Hsieh [13] considered the nonlinear
Rayleigh–Taylor instability at the plane interface in the presence of
heat and mass transfer and found that when there is strong heat and
mass transfer across the interface, nonlinearity increases the stability
range for Rayleigh–Taylor instability. Lee [14] studied the Rayleigh–Tay-
lor instability at the cylindrical interface with heat and mass transfer
using inviscid potential flow analysis. He concluded that heat transfer
has no effect in the linear analysis while it stabilizes the interface in
the nonlinear theory.

If the flow is irrotational, the viscous term in the Navier–Stokes
equation is zero but the viscous stresses are not zero. In the viscous po-
tential flow theory, viscosity enters through normal stress balance, and
therefore, the nonlinear theory based on viscous potential flow analysis
gives more efficient results as compared to the inviscid theory. Awasthi
et al. [15] used viscous potential flow theory to study the nonlinear
Rayleigh–Taylor instability at the plane interface of two viscous fluids
when there is heat andmass transfer across the interface. The nonlinear
capillary instability in the presence of heat and mass transfer was stud-
ied by Awasthi andAgrawal [16]. Recently, Awasthi [17] studied the vis-
cous potential flow analysis of nonlinear Rayleigh–Taylor instability of
cylindrical flow in a viscous medium in the presence of heat and mass
transfer and found that the nonlinear theory reduces the stability of
the system.

Although there is a large literature on the Rayleigh–Taylor instability
with heat andmass transfer butmost of the publishedwork has consid-
ered either linear theory in viscous fluids or nonlinear analysis in invis-
cid fluids. However, the coupling of nonlinear effects with heat transfer
has a direct effect in various applications such as boilers, condensers, re-
actors, and other industrial processes, and a nonlinear theory is essential
to reveal the effect of heat and mass transfer on the stability of the sys-
tem. Therefore, in the present article, the nonlinear Rayleigh–Taylor in-
stability of the interface between two viscous, incompressible and
miscible fluids in a fully saturated porousmedium has been considered,
when the phases are enclosed between two horizontal cylindrical sur-
faces coaxial with the interface, and when there is mass and heat trans-
fer across the interface. The viscous potential flow theory has been
employed and a third order nonlinear theory for the propagation of
waves on the cylindrical interface has been developed. We have used
the method of multiple scales for the investigation and the well-
known Ginzburg–Landau equation describing the nonlinear waves has
been obtained. In addition, a comparative analysis has been made be-
tween the results obtained in the viscous medium (Awasthi [17]) and
the present analysis.

2. Problem formulation

We consider a system consisting of two incompressible, thermally
conducting and viscous fluids, separated by a cylindrical interface r =
R, in an annular porous medium with constant porosity ε and constant
permeability k1 as shown in Fig. 1. We consider a cylindrical system of

coordinates (r, θ, z), so that in the equilibrium state z-axis is the axis of
symmetry of the system. The inside fluid (1) occupies the inner region
r1 b r b R, having thickness h1, density ρ(1) and viscosity μ(1) and is
bounded by the rigid cylindrical surface r = r1 while the outside fluid
(2) occupies the outer region R b r b r2, having thickness h2, density
ρ(2) and viscosity μ(2) and is bounded by the rigid cylindrical surface
r = r2, where h1 = R − r1 and h2 = r2 − R. The temperatures at r =
r1, r = R and r = r2 are T1, T0 and T2, respectively and surface tension
at the interface is taken as σ. We have assumed that both fluids are in-
compressible and irrotational. In the basic state, thermodynamics equi-
librium is assumed and the interface temperature T0 is set equal to the
saturation temperature.

On applying the small disturbances to the equilibrium state, the in-
terface can be expressed as

F r; z; tð Þ ¼ r−R−η z; tð Þ ¼ 0 ð2:1Þ

where η is the varicose interface displacement, and for which the out-
ward unit normal vector is given by

n̂ ¼ grad F
grad Fj j ¼ 1þ ∂η

∂z

� �2
( )−1=2

er−
∂η
∂z ez

� �
ð2:2Þ

where er and ez are unit vectors along the r and z directions, respectively.
In this analysis, theDarcy'smodel has been used to include the effect

of porous medium, therefore the equation governing the motion of vis-
cous, incompressible fluids through porous medium can be written as

ρ
ε

∂u
∂t þ

1
ε

u �∇ð Þu
� �

¼ −∇p− μ
k1

u ð2:3Þ

and equation of continuity

∇ � u ¼ 0: ð2:4Þ

Here p represents the pressure, μ denotes the fluid viscosity, k1 is the
medium permeability and ε represents the porosity of the medium
which is defined as the fraction of the total volume of the medium
that is occupied by void space.

We have considered that themotion is irrotational, so that the veloc-
ity can be expressed as the gradient of a potential function i.e.

uj ¼ ∇ϕ jð Þ j ¼ 1;2ð Þ : ð2:5Þ

The potential functions satisfy the Laplace equation as a conse-
quence of the incompressibility constraint. That is,

∇2ϕ jð Þ ¼ 0; j ¼ 1;2ð Þ : ð2:6Þ

3. Boundary conditions

The solutions for the potential functions ϕ(j), j = 1, 2 should satisfy
the following boundary conditions:

(1) The normal velocity vanishes at the rigid cylindrical surfaces
r = r1 and r = r2, so we have

∂ϕ jð Þ

∂r ¼ 0 at r ¼ r j; ð3:1Þ

(2) At the free interface r = R + η(z,t), we have
(i) The interfacial condition, which expresses the conservation of

mass across the interface, is given by the equation

ρ
∂F
∂t þ∇ϕ �∇F

� �� �
¼ 0 ð3:2Þ

Fig. 1. Equilibrium configuration of the system.
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