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A general numerical model was presented to analyze the interval inverse hyperbolic heat conduction problem,
with Bregman distances and weighted Bregman distances as regularization terms. By using the interval finite
elementmethod and interval extension theory, the direct and inversemodels were established for uncertainties.
The eight-point isoparametric elements were applied for the discretization in the space domain, and the Precise
algorithm in time domain was empolyed. The inverse problems were implicitly formulated as optimization
problems, using squared residues between the calculated and measured quantities as the objective function of
the inverse identification. Results show that the proposed numerical models can identify single and combined
interval thermal parameters and boundary conditions for hyperbolic heat transfer problems accurately and
efficiently.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Inverse heat conduction problems (IHCPs) arise in many engineer-
ing fields. Over the last decades, various analytical and numerical
methods were developed to identify the single and combined variables
for the elliptical and parabolic IHCP [1–4]. However, the reports on
hyperbolic IHCP are few [5–7], and most of them are concentrated on
single variable. The repeated forward analyses are required for the
inverse calculation, so the accuracy of forward calculation directly de-
termines the inverse results. Comparedwith the parabolic heat conduc-
tion problems, the hyperbolic direct and inverse problems are more
complicated due to the existence of second order derivative of temper-
ature with respect to time.

In previous studies, the parameters of IHCP were considered as
deterministic variables and the parameter identification depended on
the certain measurement information. They belong to deterministic
inverse identification, such as the identification of heat transfer coeffi-
cient, boundary condition, and the source term. It is well known that
there exist a lot of uncertainties in structural parameters caused by var-
ious sources, e.g. variability in material property, initial manufacturing
errors, and aging deterioration of performance. These uncertainties
may lead to various unexpected situations where the structural re-
sponses such as deformation and stress may exceed the performance

limit. Hence, it is necessary to evaluate the uncertainty of the structural
response more accurately and efficiently [8].

There are mainly three approaches to describe the uncertainty,
including probabilistic method, fuzzy theory, and interval analysis. The
input data of probabilistic description of uncertainties are described as
random variables, or stochastic processes. In order to apply probabilistic
method, one needs to use a large number of inputs to describe probabil-
ity density functions of uncertain variables, functions, or fields. When
such information is available, probabilistic method is a viable procedure
to predict structural reliability, or its complement, probability of failure.
The presence of only small deviations from the real probabilistic distri-
butions may lead to significant errors in the final results [9–11]. Fuzzy
theory has been successfully used in domains in which information is
incomplete or imprecise, such as linguistic expressions, but the speed
of information processing is low [12]. Interval analysis is based on inter-
val operations including interval arithmetic. The technique calculates
the interval between the upper and lower bounds regarding variables
under uncertainty [13,14]. It is particularly useful when statistical infor-
mation is not sufficient to describe the probability distribution of the
uncertain parameters, or only the range of the uncertain parameters is
known, and the response of the interval range is desirous. In the past
few years, some reports have been developed for the interval conduc-
tion problems [15,16]. The reports on interval IHCP are few, especially
for uncertain interval inverse problems of combined variables. The re-
port of interval inversion for hyperbolic heat conduction problem
has not appeared.

Inverse problems are typically ill-posed problems, which can be
solved as optimization problems. Tikhonov regularization, named for
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Andrey Tikhonov, is one of the most effective regularization methods to
deal with these problems [17]. As indicated by SilvaNeto and Cella [18],
the proper choice of the regularization parameter is of key importance
for the implementation of regularization methods for the solution of
inverse problems. In order to achieve the purpose of noise suppression
simultaneously, the Bregman distances [19,20] as an option to Tikhonov
have been applied to regularization algorithm in this paper. Cidade et al.
[21] used Bregman distances as Tikhonov's regularization terms for the
restoration of atomic force microscopy nanoscale images; Pinheiro
et al. [22] dealt with an inverse problem of radiative property estimation
based on this regularization technique;Wang andWang [20] developed
two stage Bregman regularization homotopy inversion algorithm for the
parameter estimation for metabolic networks. Although Bregman
distances have been used in many fields, it seems that there is no rele-
vant work on the use of this technique in the uncertain inversion field.

In this paper an uncertain interval inversemodelwas established for
hyperbolic heat conduction problem with interval parameters. The
direct model was obtained, using the Precise algorithm in time domain
[23] and interval extension theory [24]. Using Bregman distances and
weighted Bregman distances for regularization function, the inverse
model was explored for uncertainty problem, and the numerical tests
were given. The results indicate that the proposed model can identify
interval parameters for hyperbolic IHCP with high computational
precision and efficiency.

2. Governing equation

The governing equation, relevant boundary and initial conditions for
the hyperbolic heat transfer problems can be written in tensor forms
[25]

τ cT ;t

h i
;t
þ cT ;t ¼ kijT ; j

h i
;i
þ Q xi∈Ω ð1Þ

T tð Þ ¼ T tð Þ xi∈Γ1 ð2Þ

ni kijT ; j

� �
¼ q tð Þ þ h tð Þ � T tð Þ−Ta tð Þð Þ
¼ q tð Þ þ h tð Þ � T tð Þ−ha tð Þ xi∈Γ2 ð3Þ

T ¼ T0; T ;t ¼ DT0 t ¼ 0 ð4Þ

where T denotes the temperature, τ represents a relaxation time, c and
kij are the thermal parameters, Q is the strength of heat source and T,t
is the first order derivative of temperature with respect to time.
Γ = Γ1 + Γ2 represents the boundary of the domain, ni refers to the
unit vector of outside normal. xi is the vector of coordinates, and Ω
represents the domain of the problem. Summation convention is
applied to indexes j and i, which will cover either from 1 to 2 for 2D
problems, or from 1 to 3 for 3D problems.

In the governing equation, boundary and initial conditions, the
parameters are interval parameters, such as kij, c, q, h, Ta, Q and T0. So
the above equations are changed to differential equations with interval
parameters.

3. Direct models

Due to the presence of the second derivative of temperature with
respect to time on control equation, the differential equations are very
difficult. A precise discrete algorithm in time domain [23] is applied in
this paper. Specific process is as follows.

Within a discrete time interval, T is expanded as

T ¼
X
m¼0

Tmsm ð5Þ

where s is defined by

s ¼ t−t0
ts

ð6Þ

where t0 and ts represent the beginning time and the size of the time
interval, respectively, and Tm is the expanding coefficient of T with
order m.

By utilizing d
dt ¼ d

ds
ds
dt ¼ 1

ts
d
ds , the first and second derivatives of Twith

respect to t can be transformed into

T ;t ¼
X
m¼0

mþ 1ð Þ
ts

Tmþ1sm; T ;t

h i
;t
¼

X
m¼0

mþ 1ð Þ mþ 2ð Þ
ts

2 Tmþ2sm: ð7;8Þ

The other parameters of control equation and boundary conditions
are expanded in the same way

kij ¼
X
m¼0

kij
msm c ¼

X
m¼0

cmsm T ¼
X
m¼0

Tmsm ð9–11Þ

q ¼
X
m¼0

qmsm h ¼
X
m¼0

hmsm Ta ¼
X
m¼0

Ta
msm: ð12–14Þ

Substituting Eqs. (7)–(14) into Eqs. (1)–(4) and comparing the
coefficient term of sm, we can obtain

τ
XN
m¼0

mþ 1ð Þ mþ 2ð Þ
ts

2 cN−mTmþ2 þ τ
XN
m¼0

mþ 1ð Þ2
ts

2 cN−mþ1Tmþ1

þ
XN
m¼0

mþ 1ð Þ
ts

cN−mTmþ1 ¼
XN
m¼0

kN−m
ij T ; j

m�
;i
þ QN

h
ð15Þ

with the boundary conditions

TN ¼ TN ð16Þ

ni

XN
l¼0

kN−l
ij T l

; j ¼ f N : ð17Þ

The interval finite element recursive format in the time domain can
be obtained, using the interval analysis method based on element and
interval parameters.

τ
XN
m¼0

mþ 1ð Þ mþ 2ð Þ
ts

2 CN−m φð Þ Tf gmþ2 þ τ
XN
m¼0

mþ 1ð Þ2
ts

2 CN−mþ1 φð Þ Tf gmþ1

þ
XN
m¼0

mþ 1ð Þ
ts

CN−m φð Þ Tf gmþ1 þ
XN
m¼0

KN−m φð Þ Tf gm ¼ FN φð Þ

ð18Þ

where φ represents the interval vector, which can be decomposed
and expressed as φ = φc + [−Δφ,Δφ] = φc + Δφe. C,K and F are
the heat capacity matrix, the stiffness matrix and the equivalent load,
respectively. They can be expressed as follows

CN−m φð Þ ¼ CN−m φc� �þ ΔCN−m
; KN−m φð Þ

¼ KN−m φc� �þ ΔKN−m
; FN φð Þ ¼ FN φc� �þ ΔFN ð19Þ
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