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A novel scheme for implementation of the no-slip boundary conditions in the lattice Boltzmann method is
presented. In detail, we have substituted the classical bounce-back idea by the direct velocity boundary condition
specification employing geometric-based manipulation of the equilibrium distribution functions. In this way we
have constructed the equilibrium density function in such a way that it imposes the desired Dirichlet boundary
conditions at numerical boundary points. Therefore, in fact a kind of equilibrium boundary condition is made.
This specification for general curved solid surfaces is made bymeans of immersed boundary concepts, but without
any need to interpolating density distribution values. On the other hand, the results show that themethod presents
a faster solution procedure in comparison to the bounce-back scheme.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Classically, researchers have adopted the bounce-back schemedealing
with modeling the effects of solid boundaries in lattice-Boltzmann
method (LBM) [1]. This scheme simply states reflection of density func-
tions in the opposite direction, where facing a solid wall in the DnQm

configurations. One of the drawbacks of this technique is that it is at
most first-order accurate unless the solid boundary is located exactly
mid-way between the physical boundary point and the immediate
node inside the solid [2]. This lack of accuracy propagates to the
whole solution domain. In fact, the reflective rules of the density func-
tions may implement the boundaries unphysically [2].

In order to remedy the shortcomings of the bounce-back scheme,
several modifications have been recommended. Major modifications
include attempts to increase the accuracy of the scheme to two [3]
and amending the scheme for curved geometries via interpolation tech-
niques [4–8]. Note that the idea of interpolation is limited in the sense
that however the spatial accuracy is improved by higher-order interpo-
lations, the time accuracy is essentially first-order [7].

In this study, inspired by the impressing idea of the immersed
boundary methods (IBM) [8–12], we replace the traditional bounce-
back schemewith the directmanipulation of themacroscopic velocities
during the solution. This modification could yield more natural, sim-
pler and faster implementation of the boundary conditions. In fact,
the actual cost per boundary node in two-dimensions is only two

velocity manipulation operations instead of nine reflective density
corrections in e.g., a D2Q9 configuration. It also facilitates to explicitly
imposing well-documented classical computational fluid dynamics
boundary conditions (such as far field and free slip boundary condi-
tions) in lattice-Boltzmann simulations.

2. Applying Dirichlet boundary condition using immersed
boundary concept

In the cellular automataworld, one devises simple physical laws and
expects reasonable phenomena to emerge. LBM stems from cellular
automata concept where the lattice Boltzmann equation (LBE) is the
rule that states the evolution of density distribution function f of the
particles at site x at time tmoving with a velocity ci during the time in-
terval Δt along each lattice direction i. The LBE incorporating the single
relaxation Bhatnagar–Gross–Krook (BGK) approximation has the form:

f i xþ cΔt; t þ Δtð Þ− f i x; tð Þ ¼ ω f eqi − f i x; tð Þ� �
; ð1Þ

where ω denotes the relaxation factor and the local equilibrium distri-
bution is an analog version of the Maxwellian distribution function for
incompressible flow. In this context, the macroscopic flow properties
are defined as ρ = ∑ fi and ρu = ∑fici.

The continuity equation and the Navier-Stokes equations can then
be recovered with the second-order of accuracy from the Eq. (1) if the
density variation is sufficiently small. In a typical simple LBM with
D2Q9 configuration, Eq. (1) splits into two essential steps, namely colli-
sion and streaming phases. It is well-known that the collision process is
fully local and the propagation of the distribution functions is uniform.
In the most commonly used approach for simulating no-slip boundary
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condition known as bounce-back boundary condition, distribution
functions are employed and their values for nodes adjacent to solid bod-
ies are reflected in the desired directions.

In the presented method, we intend to manipulate the macroscopic
velocity values for the implementation of the no-slip boundary condi-
tion. Before we show how the boundary condition is implemented,
we note that one can adopt different strategies and configurations to
construct a LBM algorithm loop. We have configured the algorithm
in such away that our suggested hierarchy (Fig. 1) enjoys a correspond-
ing bounce-back counterpart, which is a standard implementation
procedure.

Based on the flowchart, the process is as follows. Either in the classi-
cal bounce-back and our method, in the beginning of each step after
common initialization (using equilibrium distribution function), we
employ the equilibrium boundary conditions [3] for the plausible inlets
and outlets. This step is applied for our first test case. Then, we let the
distribution function f to stream. In the next step the bounce-back tech-
nique calculates the reflected values of fwhile instead, in the presented
method we obtain the macroscopic values u and ρ from the streamed f
by means of the following procedure to modify u to get uIB. Now, we
employ the boundary-conditioned velocity field uIB to compute the
boundary-conditioned equilibrium distribution function feq

IB. The key
point is that feqIB has sensed the effect of no-slip boundaries. The final
stage is the application of the collision operator that uses feqIB to get the
updated value of f.

For the two-dimensional general complex boundary case, we define
the numerical boundary points as follows. A point NB is a numerical
boundary point associatedwith a line segment connecting two adjacent
physical boundary points on the horizontal and vertical sides of the lattice
if and only if

• it is inside the immersed solid region and
• at least one of its neighboring lattice nodes is a fluid node.

Now, we evaluate auxiliary moments at the numerical boundary
points by a Taylor series expansion from the assumed exact values on
the physical boundary points as

ρ NBð Þ ¼ ρ PBð Þ þ ln:∇ð Þ
X
i

f eqi ; ð2Þ

j NBð Þ ¼ ρ NBð Þu NBð Þ ¼ j PBð Þ þ ln:∇ð Þ
X
i

f eqi ci; ð3Þ

where, ρ(PB) and j(PB) are the moments of the physical boundary point
on the actual curve and ln is the perpendicular distance from NB to line
connecting the horizontal and vertical intersections of the curved
boundary with lattice sides.

These relations are generic for the one and two-dimensional prob-
lems. Note that, apparently these intersection points are not resolved by
the Cartesian grids and therefore ρ(PB) and j(PB) can only be employed
to approximate the equilibrium distribution functions in our target nu-
merical boundary points. We apply this scheme to force the flow system
to encounter the fraction which solid body has occupied in the cut-cell.
The idea of expanding the physical boundary values to the stair-step
shapes has been previously applied with success for improving the
mass conservations of a Navier–Stokes flow interacting with curved
boundaries [13].

Now, we derive the fictitious equilibrium distribution function on
the numerical boundary points by means of maximizing the relative

entropy densities. The necessary condition for the total functional eS
i.e., directional functional representing the relative entropy densities
to have extremum is

∂Ŝ
∂ f eqi

¼ ∂eSx
∂ f eqi

þ ∂eSy
∂ f eqi

¼ −2C ln
f eqi
Wi

þ 1

" #
þ eAx

lx
dx

−1ð Þ þ eAy
ly
dy

−1ð Þ
" #

þci: eBx
lx
dx

−1ð Þ þ eBy
ly
dy

−1ð Þ
" #

¼ 0

ð4Þ

where, C is amolecular constant, lx and ly are the Cartesian components of

ln, Ã and eB are weights to be determined and dx and dy are the horizontal
and vertical distances from NB to cut-cell locations in horizontal and ver-

tical directions respectively. Therefore, taking A ¼ C
2 −eAx

lx
dx
−eAy

ly
dy

n o
−1;

B ¼ C
2 −eBx

lx
dx
−eBy

ly
dy

n o
−1, we can find the general solution by the Taylor

series expansion around j= 0 as

f IBeq ¼ Wie
A0 1þ B1ci: j þ

B2
1

2
ci: jð Þ2 þ A2 j

2

( )
: ð5Þ

This modified equilibrium distribution function is employed in our
algorithm for numerical boundary points.

3. Results

In order to examine the method, we first bring the results for the
classical flow over a squared cylinder in a confined channel with a
parabolic inlet velocity profile. Here, the geometric configuration is
identical to that of [3]. Then, we have compared the findings with the

Fig. 1. Flowchart of the suggested method (left) and the classical bounce-back method
(right).

Fig. 2. Vorticity contours of the flow over a square for Re = 100.
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