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In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is
applied to solve the inverse hyperbolic heat conduction problem in estimating the unknown space- and time-
dependent base heat flux of a cylindrical pin fin from the knowledge of temperature measurements taken within
the medium. The inverse solutions have been justified based on the numerical experiments in which three
specific cases to determine the unknown base heat flux are examined. The temperature data obtained from
the direct problem are used to simulate the temperature measurements. The influence of measurement errors

upon the precision of the estimated results is also investigated. Results show that an excellent estimation on
the space- and time-dependent base heat flux can be obtained for the test cases considered in this study.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fourier's law has been traditionally the mainstream theory used to
solve heat conduction problems. Although Fourier's law bears a theoret-
ical flaw that thermal signal travels at an infinite speed, it solves most
large time and/or length scales engineering heat conduction problems
with satisfactory accuracy. Yet the development of laser heating and
nanotechnology has created heat conduction problems within very
small time and/or length scales. For example, a carefully controlled inci-
dent beam can be used to heat up a very small patch of area at a rate up
to 180 K/s for a few nanoseconds [1]. In such situations, researchers
have reported that the predictions by Fourier heat conduction do not
agree well with experimental observations. Maurer and Thompson [2]
observed that the surface temperature of a slab taken immediately
after a sudden thermal shock is 300 K higher than that predicted by
Fourier's law. The disagreement between Fourier prediction and such
experimental observation is rooted in the unrealistic propagation
speed of thermal signal adopted by Fourier's law. In reality, a thermal
signal travels at a finite speed, making a thermal response to behave
like a wave. Such wave-like behavior was first experimentally observed
in solid He* by Ackerman [3]. To better describe this wave-like behavior,
instead of using Fourier's law, the Maxwell-Cattaneo equation, which
takes finite thermal signal traveling speed into account, can be used.
This, however, leads to a hyperbolic governing equation on heat
conduction. The hyperbolic equation is more difficult to solve both
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theoretically and numerically than its parabolic counterpart produced
by Fourier's law. A popular numerical method to solve hyperbolic heat
conduction equation is using Laplace operator to transform the first
and second-order derivatives in the time domain to second-degree
polynomials in the Laplace domain, allowing the governing equation
to be easily solved [4,5]. An issue of this approach is that the solution
has to be inversely transformed from the Laplace domain back to the
time domain by using Laplace inverse transform, which is a complicated
and tedious process. As a result, most published work using Laplace
transform to solve hyperbolic heat conduction is limited to one dimen-
sional problems [6,7], and there have been very few two- or three-
dimensional studies [8]. Another numerical approach is using finite
differencing on the first and second-order derivatives in the time do-
main [9]. These derivatives can be discretized using backward or central
difference techniques, and the processes involved are much simpler
than those in Laplace inverse transform. Yet, there are different issues
associated with this approach. Central difference is more accurate but
is unstable, prone to introduce unrealistic oscillation to the solution.
Backward difference, on the other hand, is more stable but less accurate,
requiring the use of very small time step to achieve satisfactory accuracy
[9]. Despite these issues, a crucial advantage of this approach over
Laplace transform is that it can be easily applied to solve two- or even
three-dimensional hyperbolic heat conduction problems. Given that
most engineering problems are multi-dimensional in nature and often
involve complicated geometries, to numerically solve hyperbolic equa-
tion by finite differencing is a more practical approach.

Quantitative studies of heat transfer processes occurring in many
industrial applications often require accurate knowledge of boundary
conditions, such as heat flux, or thermophysical properties of the mate-
rials involved. These important quantities were conventionally obtained
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Nomenclature

Gy specific heat (J kg=! K= 1)

c propagation speed of thermal wave (m s~ 1)

H dimensionless convection heat transfer coefficient func-
tion at the lateral surface

H, dimensionless convection heat transfer coefficient func-
tion at the tip surface

h convection heat transfer coefficient at the lateral surface

(Wm™2K™ 1

convection heat transfer coefficient at the tip surface

(Wm™2K™1

functional

gradient of functional

thermal conductivity (W m~' K= 1)

pin fin length (m)

direction of descent

dimensionless base heat flux

base heat flux (W m~—2)

radius of pin fin (m)

space coordinate in r-direction (m)

temperature (K)

reference temperature (K)

ambient temperature (K)

time (s)

space coordinate in x-direction (m)

Xm temperature measurement position in x-direction (m)
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Greek symbols

small variation quality

thermal diffusivity, k/pC, (m? s~ 1)

step size

conjugate coefficient

very small value

dimensionless space coordinate in r-direction
dimensionless space coordinate in x-direction
dimensionless temperature

variable used in the adjoint problem
transformed dimensionless time, § — §
dimensionless time

dimensionless final time of the measurement
density (kg m—3)

standard deviation

relaxation time (s)

random variable
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Superscript/subscript
K iterative number

by expensive experimental methods which normally involve delicate
and sophisticated equipments. In recent years, however, the studies
of inverse heat conduction problem (IHCP) have offered convenient
alternatives, which largely scale down experimental work, to obtain
accurate thermophysical quantities such as heat sources, material's
thermal properties, and boundary temperature or heat flux distribu-
tions, in many heat conduction problems. For example, Chen and Su
[10] provided an inverse analysis to estimate the boundary thermal
behavior of a furnace with two layer walls. The unknown tempera-
ture distribution of the outer surface and the geometry of the inner
surface are estimated from the temperatures of a small number of

measured points within the furnace wall. Chen et al. [11] solved
the inverse problem to estimate the inlet jet temperature in an
impinging jet cooling problem. Given the maximum allowable
plate temperature and the extent of the area on plate where temper-
ature needs to be controlled, the jet temperature required to meet
the two demands can be determined. Yang and Chen [12] adopted
an inverse algorithm based on the conjugate gradient method
(CGM) and the discrepancy principle to estimate the unknown
space- and time-dependent heat flux of the disc in a nonlinear disc
brake system from the knowledge of temperature measurements
taken within the disc. In the above cases, the direct heat conduction
problems are concerned with the determination of temperature at
interior points of a region when the initial and boundary conditions,
heat generation, and material properties are specified, whereas, the
IHCP involves the determination of the surface conditions, energy
generation, thermophysical properties, etc., from the knowledge of
temperature measurements taken within the body. To date, a variety
of analytical and numerical techniques have been developed for the
solution of the inverse heat conduction problems, for example, the
conjugate gradient method [13-15], the genetic algorithm [16], and
the linear least-squares error method [17], etc.

Although there have been a great number of reports dealing with
the inverse solutions of classical Fourier heat conduction problems,
however, the study on inverse non-Fourier heat conduction problem
is much limited in the literature. For example, Chen et al. [ 18] applied
the least-square scheme in conjunction with the hyperbolic shape
function, the control volume method, and the Laplace transform tech-
nique to estimate the unknown surface conditions of one-dimensional
hyperbolic inverse heat conduction problems. Huang and Wu [19]
studied the inverse non-Fourier problem of a straight fin by an iterative
regularization method in estimating the unknown base temperature
based on the boundary temperature measurements. Yang [20] pro-
posed a sequential method for estimating the boundary conditions in
a two-dimensional hyperbolic heat conduction problem. The inverse
solution is deduced from a finite-difference method, the concept of
future time, and a modified Newton-Raphson method. Das et al. [21]
estimated the extinction coefficient and the conduction-radiation
parameter simultaneously in a non-Fourier conduction and radiation
heat transfer problem. The problem is solved using the genetic algo-
rithm in combination with the lattice Boltzmann method and the
finite-volume method. The effects of measurement errors and genetic
parameters on the accuracies of the estimated parameters are also
investigated.

Pin fins have been widely used to enhance the heat transfer rate
in many engineering applications, it is important to have knowledge
about the subjected base heat flux of the fins if the performance of
them is to be properly evaluated. The modeling of the heat transfer
process of fins can reduce experimental cost and shed light into the
heat transfer process. Therefore, the focus of the present study is to
develop an inverse hyperbolic analysis for estimating the unknown
space- and time-dependent heat flux at the base of a pin fin from
the knowledge of temperature measurements taken within the
medium. The non-Fourier effect is considered in the formulation of
heat conduction equation. An analysis of this kind poses significant
implications on several industrial applications such as laser heating,
pressure vessels and pipes, chemical plants, etc. To this end, we
present the conjugate gradient method and the discrepancy princi-
ple [22] to estimate the unknown space- and time-dependent heat
flux by using the simulated temperature measurements. The CGM
derives from the perturbation principles and transforms the inverse
problem to the solution of three problems, namely, the direct, sensi-
tivity and the adjoint problem, which will be discussed in detail in
the following sections. Here, the first- and second-derivatives in all
governing equations in the three problems are discretized by back-
ward differencing to avoid adding the tedious Laplace inverse trans-
form on top of this already complicated inverse process.
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