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This paper presents an analysis of macroscopic heat and mass transport for turbulent flow in permeable struc-
tures, which is based on the thermal non-equilibrium assumption between the porous matrix and the working
fluid. Two driving mechanisms are here considered to contribute to the overall momentum transport, namely
fluid-temperature driven and concentration driven mass fluxes. The fluid temperature, however, is also affected
by the solid temperature distribution as the two phases exchange heat through their interfacial area. Essentially,
here the double-diffusive natural convection mechanism is investigated for the fluid phase in turbulent regime.
Equations are presented based on the double-decomposition concept, which considers both time fluctuations
and spatial deviations about mean values. This work intends to demonstrate that additional transport mecha-
nisms are mathematically derived if velocity, fluid temperature and mass concentration simultaneously present
time fluctuations and spatial deviations about average values. A modeled form for the entire set of transport
equations is presented where turbulent transfer is based on a macroscopic version of the k–ε model.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Analyses of double-diffusive phenomena in free convection in
permeable media has many environmental and industrial applications,
such as in oil and gas extraction, movement of gas concentration into
the ground, contaminant dispersion in soils, grain storage and drying,
petrochemical processes, electrochemical processes, to mention a few
[1–9]. In some specific applications, the voids are large enough and
the fluid mixture may become turbulent. In such instances, difficulties
arise in the proper mathematical modeling of the transport processes
under both temperature and concentration gradients.

Usually, modeling of macroscopic transport for incompressible flows
in rigid porous media has been based on the volume-average methodol-
ogy for either heat or mass transfer [10–14]. If fluctuations in time are
also of concern due the existence of turbulence in the intra-pore space,
a variety of mathematical models have been published in the literature
in the last decade. One of such views, which entails simultaneous applica-
tion of both time and volume averaging operators to all governing
equations, has beenorganized andpublished in a book [15] that describes,
in detail, an idea known in the literature as the double-decomposition
concept (see chapter 3, pgs. 27–32 in ref. [15] for details).

In an earlier work [16], double-diffusive effects in porous media have
been treated considering thermal equilibriumbetween the porousmatrix
and the permeating fluid. Or say, in ref. [16] the fluid temperate was as-
sumed to be the same of that of the solid when analyzing double-
diffusive mechanisms. Later [17], buoyancy-free flows were investigated

with the so-called two-energy-equation model, or 2EEM for short,
which is based on the Local Thermal Non-equilibrium Hypothesis
(LTNE) meaning that the average temperature of the fluid is not equal
to the average temperature of the solid matrix However, in ref. [17] no
double-diffusion was considered.

Therefore, the purpose of this contribution is to extend the work in
ref. [16] on turbulent double-diffusion using only one energy equation,
assuming now the thermal non-equilibrium hypotheses in ref. [17],
which requires an independent energy balance for each phase. As
such, the expectation herein is that, by combining now such twomodels
that were developed on separate, a larger number of physical processes
can now be more realistically tackled.

2. Local instantaneous transport equation

The steady-state local (microscopic) instantaneous transport equa-
tions for an incompressible binary fluidmixture with constant properties
flowing in an inert heterogeneousmedium are given in details elsewhere
and for that, they will be just repeated here. They read:

within the fluid:

Continuity∇ � u ¼ 0 ð1Þ

Momentumρ∇ � uuð Þ ¼ −∇pþ μ∇2uþ ρg ð2Þ

Energy‐fluidphase ρcp
� �

f
∇ � uT f

� �n o
¼ ∇ � kf∇T f

� �
þ Sf : ð3Þ

Mass concentration ρ∇ � umℓ þ Jℓð Þ ¼ ρRℓ ð4Þ
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within the solid:

Energy‐solid shase porousmatrixð Þ0 ¼ ∇ � ks∇Tsð Þ þ Ss : ð5Þ

where u is themass-averaged velocity of the mixture,u ¼ ∑
ℓ

mℓuℓ, uℓ

is the velocity of species ℓ, mℓ is the mass fraction of component ℓ,

defined as mℓ = ρℓ/ρ, ρℓ is the mass density of species ℓ (mass of ℓ
over total mixture volume), ρ is the bulk density of the mixture

ρ ¼ ∑
ℓ

ρℓ

� �
, p is the pressure, μ is the fluid mixture viscosity, g is the

gravity acceleration vector, cp is the specific heat, the subscripts f and s
refer to fluid and solid phases, respectively, Tf and Ts are the fluid and
solid temperature, kf and ks are the fluid and solid thermal conductivi-
ties and S is the heat generation term. If there is no heat generation ei-
ther in the solid or in the fluid, one has further Sf = Ss = 0. The
generation rate of species ℓ per unit of mixture mass is given in
Eq. (4) by Rℓ. Also, as pointed out in ref. [16], an alternative way of writ-
ing the mass transport equation is using the volumetric molar concen-
tration Cℓ (mol of ℓ over total mixture volume), the molar weight Mℓ

(g/mol of ℓ) and the molar generation/destruction rate Rℓ
∗ (mol of ℓ/

total mixture volume), giving:

Mℓ∇ � u Cℓ þ Jℓð Þ ¼ MℓR
�
ℓ: ð6Þ

Further, the mass diffusion flux Jℓ (mass of ℓ per unit area per unit
time) in Eq. (4) or (6) is due to the velocity slip of species ℓ,

J ¼ ρℓ uℓ−uð Þ ¼ −ρℓDℓ∇mℓ ¼ −MℓDℓ∇Cℓ ð7Þ

where Dℓ is the diffusion coefficient of species ℓ into the mixture. The
second equality in Eq. (7) is known as Fick's Law, which is a constitutive
equation strictly valid for binary mixtures under the absence of any
additional driving mechanisms for mass transfer [10]. Therefore, no
Soret or Dufour effects are here considered.

Rearranging Eq. (6) for an inert species, dividing it by Mℓ and
dropping the index ℓ for a simple binary mixture, one has,

∇ � u Cð Þ ¼ ∇ � D∇Cð Þ: ð8Þ

If one considers that the density in the last termof Eq. (2) varieswith
fluid temperature and concentration, for natural convection flow, the
Boussinesq hypothesis reads, after renaming this density ρT,

ρT ≅ ρ 1−β T f−Tref

� �
−βC C−Cref

� �h i
ð9Þ

where the subscript ref indicates a reference value and β and βC are the
thermal and salute expansion coefficients, respectively, defined by,

β ¼ − 1
ρ
∂ρ
∂T f

�����
p;C

;βC ¼ −1
ρ
∂ρ
∂C

�����
p;T f

: ð10Þ

Here, it is interesting to point out that in ref. [16] the temperature
used in Eq. (9) was the same as that of the solid, T = Tf = Ts. Further,
it is important to note that, as it is going to be shown below, after
volume averaging Eqs. (3) and (5), Tf is going to be related to Ts due to
the exchange of heat between the two phases across the interstitial
area. Also, Eq. (9) is an approximation of Eq. (10) and shows how
density varies with the fluid temperature and mass concentration in
the body force term of the momentum equation.Substituting now
Eq. (9) into Eq. (2), one has,

ρ∇ � uuð Þ ¼ −∇pþ μ∇2uþ ρg 1−β T f−Tref

� �
−βC C−Cref

� �h i
: ð11Þ

Thus, the momentum equation becomes after some rearrangement,

ρ∇ � uuð Þ ¼ − ∇pð Þ� þ μ∇2u−ρg ðβ T f−Tref

� �
þ βC C−Cref

� �h i
ð12Þ

where (∇p)⁎ = ∇p − ρg is a modified pressure gradient.

Nomenclature

cF Forchheimer coefficient
Cℓ volumetric molar concentration
cp specific heat
Dℓ diffusion coefficient
Ddisp Mass dispersion
Ddisp,t turbulent mass dispersion
Dt turbulent mass flux
g gravity acceleration vector
I unity tensor
Jℓ mass diffusion coefficient
k turbulent kinetic energy per unit mass, k ¼ u′ � u′=2
bkNi intrinsic (fluid) average of k
K permeability
ℓ chemical species
mℓ mass fraction of component ℓ
Mℓ molar weight of component ℓ
p pressure
Prt turbulent Prandtl number
Sct turbulent Schmidt number
T temperature
u mass-averaged velocity of the mixture
uD Darcy velocity vector
uℓ velocity of species ℓ

Greek symbols
β thermal expansion coefficient
βC salute expansion coefficient
βϕ macroscopic thermal expansion coefficient
βCϕ macroscopic salute expansion coefficient
λ fluid thermal conductivity
μ fluid mixture viscosity
μt Turbulent viscosity
μtϕ macroscopic turbulent viscosity
ε dissipation rate of k
〈ε〉i intrinsic (fluid) average of ε
ρ bulk density of the mixture
ρℓ mass density of species ℓ
ϕ porosity

Subscripts
β buoyancy
ℓ chemical species
t turbulent
ϕ macroscopic
C concentration

Superscripts
i intrinsic (fluid) average
v volume (fluid + solid) average
k turbulent kinetic energy
s,f solid, fluid
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