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In this paper, we consider the inverse problem of simultaneous determination of time-dependent leading
coefficient (thermal diffusivity) and free boundary in the one-dimensional time-dependent heat equation. The
resulting inverse problem is recast as a nonlinear regularized least-squares problem. Stable and accurate
numerical results are presented and discussed.
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1. Introduction

Many heat transfer applications can be modeled by the heat
equation with a fixed boundary. However, there are numerous other
problems for which the domain or the boundary varies with time and
such problems are known as free boundary or Stefan problems [1]. For
instance, when a conductor melts and the liquid is drained away as it
appears, the heat conduction problem within the remaining solid
involves the heat equation in a domain that is physically changing
with time. In particular, the one-phase Stefan problem can be regarded
as an inverse problem.

In [2], the author investigated the heat equation with an unknown
heat source in a domain with a known moving boundary. In [3,4], the
authors investigated the numerical solution of inverse Stefan problems
using the method of fundamental solutions. In [5], an inverse moving
boundary problem is solved using the least-squares method. In
our work we consider the time-dependent nonlinear inverse one-
dimensional and one-phase Stefan problemwhich consists of the simul-
taneous determination of the time-dependent thermal diffusivity and
free boundary.

This paper is organized as follows: In the next section, we give the
formulation of the inverse problem under investigation. The numerical
methods for solving the direct and inverse problems are described in
Sections 3 and 4, respectively. Furthermore, the numerical results and
discussion are given in Section 5 and finally, conclusions are presented
in Section 6.

2. Mathematical formulation

Consider the one-dimensional time-dependent heat equation

∂u
∂t x; tð Þ ¼ a tð Þ ∂

2u
∂x2

x; tð Þ þ f x; tð Þ; x; tð Þ∈Ω ð1Þ

in the domain Ω= {(x,t): 0 b x b h(t),0 b t b T b ∞} with unknown free
smooth boundary x = h(t) N 0 and time-dependent thermal diffusivity
a(t) N 0. The initial condition is

u x;0ð Þ ¼ ϕ xð Þ; 0 ≤ x ≤ h 0ð Þ ¼: h0; ð2Þ

where h0 N 0 is given, and the boundary and over-determination
conditions are

u 0; tð Þ ¼ μ1 tð Þ; u h tð Þ; tð Þ ¼ μ2 tð Þ; 0 ≤ t ≤ T; ð3Þ

−a tð Þux 0; tð Þ ¼ μ3 tð Þ;
Z h tð Þ

0
u x; tð Þdx ¼ μ4 tð Þ;0 ≤ t ≤ T: ð4Þ

Note that μ1 and μ3 represent Cauchy data at the boundary end x=0,
while μ4 represents the specification of the energy of the heat
conducting system, [6].

First we perform the change of variable y = x/h(t) to reduce the
problem (1)–(4) to the following inverse problem for the unknowns
a(t), h(t) and v(y,t): = u(yh(t),t):

∂v
∂t y; tð Þ ¼ a tð Þ

h2 tð Þ
∂2v
∂y2

y; tð Þ þ yh′ tð Þ
h tð Þ

∂v
∂y y; tð Þ þ f yh tð Þ; tð Þ; y; tð Þ∈Q ð5Þ
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in the fixed domain Q= {(y,t):0 b y b 1, 0 b t b T} with unknown time-
dependent coefficients a(t) and h(t). The initial condition is

v y;0ð Þ ¼ ϕ h0yð Þ; 0 ≤ y ≤ 1; ð6Þ

and the boundary and over-determination conditions are

v 0; tð Þ ¼ μ1 tð Þ; v 1; tð Þ ¼ μ2 tð Þ; 0 ≤ t ≤ T; ð7Þ

−a tð Þy 0; tð Þ ¼ μ3 tð Þh tð Þ; h tð Þ
Z 1

0
v y; tð Þdy ¼ μ4 tð Þ;0 ≤ t ≤ T: ð8Þ

This model has been considered in [7]. The triplet (h(t),a(t),v(y,t)) is
called a solution to the inverse problem (5)–(8) if it belongs to the class
C1[0,T] × C[0,T] × C2,1 Q

� �
, h(t) N 0, a(t) N 0, t ∈ [0,T] and satisfies

Eqs. (5)–(8). For the input data we make the following regularity and
compatibility assumptions:

(A) μi(t)∈C1[0,T], μi(t) N 0 for t ϵ [0,T], i= 1,2,4, μ3(t)∈ C1[0,T], μ3(t) b
0 for t ∈ [0,T], ϕ(x)∈C2[0,h0], ϕ(x) N 0, ϕ’(x) N 0 for x∈[0,h0],
and f(x,t) ∈ C1,0([0,H1] × [0,T]), f(x,t) ≥ 0 for (x,t) ∈ [0,H1]
× [0,T], where

H1 ¼ max
0;T½ �

μ4 tð Þ min min
0;h0½ �

ϕ xð Þ;min
0;T½ �

μ1 tð Þ;min
0;T½ �

μ2 tð Þ
� �� �−1

;

(B) ϕ(0) = μ1(0), ϕ(h0) = μ2(0), and ∫
0

h0
ϕ(x)dx = μ4(0).

The following existence and uniqueness of solution theorems are
proved in [7].

Theorem 1. (Local existence)

If the conditions (A) and (B) are satisfied, then there exists t0 ∈ [0,T],
(defined by the input data) such that a solution of problem (5)–(8) exists
locally for (y,t) ∈ [0,1] × [0,t0].

Theorem 2. (Uniqueness)

Suppose that the following conditions are satisfied:

(i) 0 ≤ f (x,t) ∈ C1,0 ([0,H1] × [0,T]);
(ii) ϕ(x) N 0 for x∈ [0,h0], μ1(t) N 0, μ2(t) N 0, μ3(t) b 0, and μ4 (t) N 0

for t ∈ [0,T].

Then a solution to problem (5)–(8) is unique.

3. Solution of direct problem

In this section, we consider the direct initial boundary value problem
(5)–(7), where a(t), h(t), f (x,t), ∈(x), and μi(t), i = 1,2, are known and
the solution u(x,t) is to be determined additionallywith μi(t), i=3,4. To
achieve this, we use the Crank–Nicolson finite-difference scheme [8],
which is unconditionally stable and second-order accurate in space
and time.

The discrete formof our problem is as follows.We divide the domain
Q= (0,1) × (0,T) intoM and N subintervals of equal step length Δy and
Δt, where Δy = 1/M and Δt = T/N, respectively. So, the solution at the
node (i, j) is vi,j: = v (yi,tj), where yi = iΔy, tj = jΔt, and a(tj) = aj,
h(tj) = hj and f (yi,tj) = fi,j for i ¼ 0;M, j ¼ 0;N. Based on the Crank–
Nicolson method, Eq. (5) can be approximated as:

−Ai; jþ1viþ1; jþ1 þ 1þ Bjþ1

� �
vi; jþ1−Ci; jþ1vi−1; jþ1

¼ Ai; jviþ1; j þ 1−Bj

� �
vi; j þ Ci; jvi−1; j þ

Δt
2

f i; j þ f i; jþ1

� � ð9Þ

for i ¼ 1; M−1ð Þ, j ¼ 0;N, where

Ai; j ¼
Δtð Þα j

2 Δyð Þ2 −
Δtð Þγ jyi
4Δy

; Bj ¼
Δtð Þα j

Δyð Þ2 ; C j ¼
Δtð Þα j

2 Δyð Þ2 þ
Δtð Þγ jyi
4Δy

;

α j ¼
aj

h2j
; γ j ¼

h′ t j
� �
hj

:

The initial and boundary conditions (6) and (7) can also be collocated
as:

vi;0 ¼ ϕ h0yið Þ; i ¼ 0;M; ð10Þ

v0; j ¼ μ1 t j
� �

; vM; j ¼ μ2 t j
� �

; j ¼ 0;N: ð11Þ

At each time step tj, for j ¼ 0; N−1ð Þ, using the Dirichlet boundary
conditions (11), the above difference Eq. (9) can be reformulated as a
(M-1) × (M-1) system of linear equations of the form,

Lu ¼ b; ð12Þ

where

u ¼ v1; jþ1; v2; jþ1;…; vM−1; jþ1

� �tr
; b ¼ b1; b2;…; bM−1ð Þtr

and

L ¼

1þ Bjþ1 −C1; jþ1 0 ⋯ 0 0 0
−A2; jþ1 1þ Bjþ1 −C2; jþ1 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ −AM−2; jþ1 1þ Bjþ1 −CM−2; jþ1
0 0 0 ⋯ 0 −AM−1; jþ1 1þ Bjþ1

0
BBBB@

1
CCCCA;

b1 ¼ A1; jv0; j þ 1−Bj

� �
v1; j þ C1; jv2; j þ A1; jþ1v0; jþ1 þ

Δt
2

f 1; jþ1 þ f 1; j
� �

;

bi ¼ Ai; jvi−1; j þ 1−Bj

� �
vi; j þ Ci; jviþ1; j þ

Δt
2

f i; jþ1 þ f i; j
� �

; i ¼ 2; M−2ð Þ;

bM−1 ¼ AM−1; jvM−2; j þ 1−Bj

� �
vM−1; j þ CM−1; jvM; j þ CM−1; jþ1vM; jþ1

þΔt
2

f M−1; jþ1 þ f M−1; j

� �
:

As an example, consider the problem (5)–(7) with T = 1 and

a tð Þ ¼ 1þ t; h tð Þ ¼ 1þ 2t; h0 ¼ h 0ð Þ ¼ 1; ϕ h0yð Þ ¼ 1þ yð Þ2;
μ1 tð Þ ¼ 1þ 8t; μ2 tð Þ ¼ 2þ 2tð Þ2 þ 8t; f h tð Þy; tð Þ ¼ 6−2t:

The exact solution of the direct problem (5)–(7) is given by v(y, t)=
(1+ y+2yt)2+ 8t, and the desired outputs are μ3(t)=−2(1+ t) and
μ4 tð Þ ¼ 2þ2tð Þ3−1

3 þ 8t 1þ 2tð Þ. The numerical and exact solutions for v(y,t)
are shown in Fig. 1 and very good agreement is obtained. Tables 1 and 2
give the numerical heat flux at y=0 and the numerical integral in com-
parison with the exact values, i.e. μ3 and μ4. These have been calculated
using the following O(h2) finite-difference approximations for deriva-
tive and trapezoidal rule for integration:

vy 0; t j
� �

¼ 4v1; j−v2; j−3v0; j
2Δy

; j ¼ 1;N; ð13Þ

Z 1

0
v y; t j
� �

dy ¼ Δy
2

v 0; t j
� �

þ v 1; t j
� �

þ 2
XM−1

i¼1

v yi; t j
� � !

; j ¼ 0;N:

ð14Þ
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