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a b s t r a c t

An approximate method for solving the Bloch–Torrey equation by surface integrals is developed. The
method presents a fast means for calculating pulsed-gradient spin-echo nuclear magnetic resonance sig-
nals in porous systems, and it is especially efficient when the surface-to-volume ratio is low. The number
of operations for retrieving echo decays scale as Oðk2Þ, where k is the number of surface elements. The
theory is numerically validated for pulsed-gradient spin-echo sequences on two-dimensional and
three-dimensional examples.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Pulsed-gradient spin-echo (PGSE) nuclear magnetic resonance
(NMR) is an experimental method commonly used for studying
molecular diffusion in porous materials [1]. In particular, it has
been successfully applied for extracting quantities such as pore
distributions [2] and surface-to-volume ratio [3]. To interpret the
signals from the experiments, one uses the Bloch–Torrey (BT)
equation [4] that describes the evolution of the transverse magne-
tization due to diffusion in a magnetic field. It is however compu-
tationally challenging to solve the BT equation for porous media,
especially when the gradient pulses cannot be approximated as
infinitely short [5]. Several matrix formalisms that can handle fi-
nite gradient durations have been proposed [6–10]. These methods
employ the eigenfunctions of the Laplace operator and have the
advantage, as described in [9,10], that a moderate number of
eigenfunctions may be sufficient for an accurate signal computa-
tion. However, for large scale models of porous systems, finding
even a moderate number of Laplacian eigenfunctions is in itself a
challenging problem. The commonly used numerical techniques
involve a discretization of the domain that results in a large size
matrix representation of the Laplace operator. The eigenvalues
and eigenfunctions of this matrix are then obtained by iterative

eigensolvers, where each iteration scales with the total number
of volume elements in the computational domain.

In this paper we transform the Bloch–Torrey equation to a
boundary problem, thus substantially reducing the number of
operations needed, and form an approximate solution by surface
integrals. The approach follows the outline of [11,12], where an
approximation of the first N eigenfunctions and eigenvalues of
the Laplace operator was calculated on the boundaries.

2. Theory

The transverse magnetization of diffusing spins subject to a
time-independent external magnetic field gradient is described
by the Bloch–Torrey equation

@

@t
mðr; tÞ ¼ ðDDþ icgBðrÞÞmðr; tÞ; ð1Þ

where D denotes the Laplace operator, D the self-diffusion coeffi-
cient, c the gyromagnetic ratio, g the gradient strength and BðrÞ
the normalized spatial gradient profile which is assumed to be lin-
ear and directed in the x-direction: BðrÞ ¼ ðex � rÞ ¼ x. For simplicity
the relaxation of the spins is not taken into account. Formally one
can integrate Eq. (1) in time:

mðr; tÞ ¼ exp½�tðDDþ icgBðrÞÞ�m0ðrÞ: ð2Þ

Here m0ðrÞ denotes the initial magnetization which is transformed
by the above evolution operator. Barzykin [9] represented Eq. (2)
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through the eigenbasis of the Laplace operator, i.e. by expanding
over L2-normalized eigenfunctions uk satisfying

DukðrÞ þ kkukðrÞ ¼ 0 ðr 2 XÞ;
D @

@nþ j
� �

ukðrÞ ¼ 0 ðr 2 CÞ;

(
ð3Þ

where X denotes the pore volume and C the internal surface of
the porous material. The corresponding eigenvalues are denoted
by kk and @=@n denote the normal derivative (pointing outwards
from the confining domain). The boundary condition on the sur-
face C may also include the surface relaxation j. This approach
leads to a formal solution for a standard PGSE sequence with
rectangular gradient pulses of duration d separated by diffusion
time t

mðr; tÞ ¼
X
n;k

ukðrÞWk;n

Z
X

dr0unðr0Þm0ðr0Þ;

W ¼ e�dðDK�icgBÞe�tDKe�dðDKþicgBÞ;

ð4Þ

where the matrices K and B are defined as Knm ¼ dnmkn and

Bnm ¼
Z

X
drunðrÞBðrÞumðrÞ: ð5Þ

The matrices K and B in Eq. (4) can often be truncated to relatively
small N � N matrices since the eigenvalues of the Laplace operator
grow rapidly yielding an exponential decay of the error with N. The
truncated solution is valid down to some smallest time scale and
arbitrary refinement can be made by increasing the size of matrices.
Since the evolution of the magnetization is calculated from m0ðrÞ to
mðr; tÞ, each change of the gradient and diffusion time can be imple-
mented through a chain-like matrix product, providing solutions for
a variety of pulse sequences [10].1

Although the approach by Barzykin [9]) provides a practical
way of solving the Bloch–Torrey equation, one crucial remaining
question is how to obtain the N first eigenfunctions and eigen-
values to the Laplace operator in a prescribed confined geometry.
This is in itself a challenging problem when the domains are com-
plex and require fine resolution. Here, we suggest to use the mixed
basis method [12]. In a nutshell, the method relies on a small set of
basis functions which capture the most relevant part of the low
frequency spectrum of the Laplace operator in a confined geome-
try. The basis consists of two sets of functions: Fourier functions
with wave numbers q fjqigN

q¼1, mimicking the free diffusion behav-
ior,2 and surface functions fjsigM

s¼1 capturing the influence of the
boundaries. The surface functions are chosen to be dipole potentials
from sources at the boundaries C

jsi ¼
Z

C

rsðr0Þnðr0Þ
jjr� r0jj2

dr0; ð6Þ

where nðr0Þ denotes the (outward) surface normal at point
r0 2 C and r denotes the charge distribution. Using dipoles to
model Neumann conditions at the boundaries is a standard
approach (see e.g. [13]), which motivates the choice of the di-
pole potentials. The mixed basis can express an approximate
solution of Eq. (2) and, importantly, be formed only on the
boundaries C. The new matrices K̂ and B̂ are expressed in
the mixed basis as

K̂nm ¼ hnjDjmi;
B̂nm ¼ hnjBðrÞjmi;

ð7Þ

where jni; jmi 2 fjqigN
q¼1 [ fjsig

M
s¼1. An expression for the matrix K̂

through surface integrals was suggested in [12] (where it is referred
to as a perturbation matrix). The focus of this paper is the matrix B̂,
describing the gradient term. This matrix consists of three types of
scalar products, namely the Fourier–Fourier, the surface–Fourier
and the surface–surface terms. We now show how these terms
can be calculated through surface integrals.

(i) The Fourier–Fourier terms describe the free diffusion interac-
tion with the gradient and can be calculated analytically. For
example, in the case of Dirichlet boundary conditions on the
exterior boundary of the computational domain (a cube of size
L), the ‘‘free’’ diffusion is described by (normalized) sine
functions,

jqi ¼ ð2=LÞ3=2 sinðqxpx=LÞ sinðqypy=LÞ sinðqzpz=LÞ:

The scalar products (in three dimensions) with the gradient can be
integrated directly

hqjxjq0i ¼ dqyq0y dqzq0z L�
16ð�1þð�1Þqxþq0x Þqxq0x

p2ðq2
x�q02x Þ

if qx – q0x;
2 if qx ¼ q0x:

(
ð8Þ

(ii) The surface–Fourier terms can be reduced to surface integrals
using the commutator relations

½D; x� ¼ 2
@

@x
; ½D; @

@x
� ¼ 0: ð9Þ

Using Djqi ¼ �kqjqi with kq ¼ p2ðq2
x þ q2

y þ q2
z Þ=L2, one gets

hqjxjsi ¼ hsjxjqi

¼ 1
kq
hrsjxjqi þ

2
k2

q

hrsjq0i � hsj½D;
@

@x
�jqi

� �
: ð10Þ

The last commutator relation is still kept in Eq. (10) as a remin-
der that the above commutator relations are exact only for the
Laplace operator without exterior boundary conditions. Hence,
in an implementation care must be taken at these points. Three
suggestions to solve this issue are: (1) to approximate the
potentials jsi to be zero at the exterior boundaries; (2) to solve
the potentials also at the exterior points; or (3) to expand the
derivative in the eigenspace of the Laplace operator. For this
study we chose the last option since (1) require a large distance
from the interior boundary to the exterior boundary to reduce
the error, (2) require an efficient implementation for solving
the boundaries and (3) is a direct (although probably not the
most computationally efficient) way to obtain a good
approximation.

(iii) Finally, the surface-surface products are calculated in the
following way

hsjxjs0i ¼
Z

xdr
Z

C

rsðr0Þnðr0Þ
jjr� r0jj2

dr0
Z

C

rs0ðr00Þnðr00Þ
jjr� r00jj2

dr00; ð11Þ

¼
Z

C

Z
C
rsðr0ÞNgðr0; r00Þrsðr0Þdr0dr00;

where the last line is obtained by exchanging the order of
integrations and introducing a kernel Ngðr; r0Þ. The kernel
Ngðr; r0Þ can be calculated analytically for the case of Neumann
boundary conditions, where the source distribution rsðrÞ is
formed by dipoles. This is done by integrating the product of
two dipole-potentials located at r and r0, weighted by the gra-
dient g:

1 In this context, an alternative matrix formalism developed in [6,7] deserves some
comments. This approach is similar ours, in the sense that the evolution of the
magnetization is represented in a chain-product and the magnetization at the end of
the sequence is found by multiplying matrix exponents. An important difference is
that the alternative formalism discretizes the time interval in short steps s that
requires huge matrices, making it impractical for other than systems with analytically
known propagators.

2 A more precise notation is jqx ; qy; qzi. This is avoided for readability but should be
kept in mind.
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