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a b s t r a c t

Motional barriers due to geometrical restrictions are ubiquitous in heterogeneous media such as porous
rocks or biological tissues. As a consequence, molecular propagation deviates from the patterns of Gauss-
ian diffusion. In this paper, we report on the results of the application of several non-Gaussian and anom-
alous diffusion models used to describe experimental data in the artificial anisotropic system with well-
defined properties. In particular, we focus on the influence of fibre packing density on the quantitative
metrics of these models and compare their sensitivity to this parameter. The results are discussed in
the context of the importance for better understanding the governing diffusion mechanisms in complex
tissue microstructures.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Diffusion measurements, combined with pulsed field gradient
NMR [1,2], allow one to probe the local geometrical environment
in porous materials [2,3], self-assembled systems [4,5], and biolog-
ical tissues [6]. Diffusion tensor imaging (DTI) [7,8] plays an impor-
tant role in brain research where it has been used for investigating
in vivo axonal fibre architecture [9] and its relationship to neurode-
generative disorders. Conventional DTI is limited in that it is based
on the Gaussian model of diffusion valid only for low diffusion
weightings (b-values). For increasing b-values, the diffusion-
weighted signal of water in the brain tissue deviates significantly
[10] from the mono-exponential function expected when employ-
ing the Gaussian propagator. This deviation is caused by properties
of the cellular microstructure, such as its compartmentalization,
restrictions to diffusion, heterogeneity and anisotropy on multiple
length scales [11].

In the brain tissue, important parameters such as cellular
(‘‘pore’’) size distribution or axonal volume fraction (fibre packing
density) [12] can be elucidated from diffusion studies. In particular,
some approaches relevant for diffusion in porous media have been
successfully translated to the investigation framework of the white
matter [13,14]. The common main factor that influences diffusion
in a wide variety of porous systems (natural rocks, zeolites, meso-
porous glass, cements, polymeric composites) and biological tis-
sues (brain tissue, cartilage, lungs) is an ubiquitous presence of
motional barriers. Geometrical restrictions hinder molecular prop-
agation leading to a reduction of the experimentally measured
(‘‘apparent’’) diffusion coefficient with respect to its intrinsic (bulk)

value, D0. As a result, the mean squared displacement hr2i is related
to the observation time, t, as [3].

hr2i ¼ 2dDðtÞt; ð1Þ

where d is the dimensionality, and D(t) is referred to as the ‘‘time-
dependent diffusion coefficient’’. For unrestricted diffusion in iso-
tropic liquid, D(t) coincides with D0.

In porous media studies, D(t) is used as an informative probe of
local geometry [3,6]. In the short time limit, it allows one to deter-
mine the surface-to-volume ratio, based on the assumption that
only a small fraction of molecules in the surface layer with a thick-
ness of approximately

ffiffiffiffiffiffiffiffi

D0t
p

would be restricted by the boundaries
[15,16]. The asymptotic behaviour in the long time limit was con-
sidered in Refs. [17,18]. In well-connected porous media, Dðt !1Þ
is reduced with respect to D0 by a tortuosity factor, j, which de-
pends on the pore volume fraction and geometry [3]. The time
range between the short and long asymptotic limits is often inter-
polated with the help of the Padé approximation [19]. However,
there is no general analytical approach describing diffusion in the
full time range.

Complex systems often give rise to anomalous transport prop-
erties [20,21] characterized by a power law dependence of the
mean squared displacement on time

hr2i ¼ 2dDtb
; ð2Þ

where D is the proportionality coefficient, and b is the exponent
which allows one to distinguish various motional regimes, such as
b = 0, ‘‘localized’’; 0 < b < 1, ‘‘subdiffusive’’; b = 1, ‘‘normal’’; b > 1,
‘‘superdiffusive’’; and some others. In the case of anomalous diffu-
sion expressed by Eq. (2), D(t) in Eq. (1) will scale as Dtc, where
c ¼ b� 1. The deviations of the scaling exponents b (or c) from 1
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(or 0) of the Gaussian model can be considered as a measure of the
complexity of the environment [22].

In vivo brain diffusion studies performed with the medical scan-
ners are subject to strong restrictions with respect to maximal gra-
dient strengths, pulse durations, etc. In particular, short or/and
long time diffusion limits, as well as the conditions of narrow pulse
approximations, are hardly achievable. Time-dependent studies
using the stimulated echo pulse sequence [23] are also difficult
due to signal-to-noise limitations. The majority of studies are usu-
ally carried out with conventional spin echoes [1] at low diffusion
weightings. They operate with the scalar metrics of the recon-
structed diffusion tensor, such as the (apparent) mean diffusivity,
tensor eigenvalues, and fractional anisotropy, that are successfully
exploited as biomarkers of various pathological brain conditions.

In recent years, increasing efforts have been devoted to the
development of new approaches to analyze non-Gaussian diffusion
patterns in brain tissue in the extended range of b-values [24–29].
The underlying biophysical mechanisms of deviations from the
Gaussian model are not yet well understood. One of the reasons
is that numerous potential effects of complex microstructural
and physiological tissue properties on the average NMR signal can-
not be easily decomposed. Some well-established models, such as
CHARMED [30], propose the concept of compartmentalization of
water molecules within the extracellular (ECS) and intracellular
(ICS) spaces. The ECS is characteristic of hindered diffusion (how-
ever, not restricted to any localized volumes) and gives rise to
the faster diffusion component. More restricted motion in the ICS
determines the slow diffusion component. In the frame of such
models, the slope of the attenuation curve at low b-values is dom-
inated by the faster diffusion in the ECS. One should mention, how-
ever, that the model relative ICS and ECS volume fractions tend to
contradict those known from histology. For a more detailed survey
of the existing approaches the reader is referred to the reviews
published in the literature, such as [11] and [28].

In order to better understand the fundamental effects of micro-
structure on diffusion measurements it is helpful to study less
complex model systems of known structure. This can be achieved
in two complementary ways: using the Monte Carlo simulations
[31,32] or in vitro model systems (‘‘phantoms’’) [32,33]. Recently,
we developed a novel multi-section fibre phantom [33] in which
there is one section that contains a region of oriented fibres with
the gradient of the fibre packing density. Fibres are not hollow
(i.e., contain no water inside) and, therefore, model motional barri-
ers in the ECS. Fibre packing density, f, (not to be confused with the
physical density of the fibre), is an important characteristic of var-
ious tissue types, such as fibrous plants or human brain. In partic-
ular, the tortuosity of the ECS strongly depends on this parameter.
Fibre density may change, for example, as a consequence of an ax-
onal loss caused by neurodegenerative processes, traumatic brain
injuries or tumours [34].

The primary purpose of this study is to investigate the influence
of fibre density on the quantitative metrics in three non-Gaussian
empirical models of diffusion recently introduced in brain re-
search: the diffusion kurtosis model, DKM, [25,29]; the lognor-
mal-distribution model, LNDM, [29]; and the stretched-
exponential model, SEM, [26,27]. We also analyse the dependence
of axial (parallel to fibres), and radial (perpendicular to fibres) dif-
fusivities on the diffusion times in the broad range.

2. Materials and methods

The construction of an in vitro model system with a fibre-den-
sity gradient, as well as the diffusion experiments performed on
it, are described in Ref. [33]. Data analysis was done using in-house
Matlab scripts (Matlab, The MathWorks, Natick, MA, USA). We

used a double-refocused spin-echo pulse sequence for studies of
non-Gaussian diffusion and the stimulated echo pulse sequence
[23] for time-dependent studies. Axial diffusivity, kaxial, (the major
tensor eigenvalue), and radial diffusivity, kradial, (the average of two
minor eigenvalues), were derived by a tensor reconstruction for
typical b-values 61 lm�2 ms. The dependence of kradial on the dif-
fusion time, td, in the stimulated echo pulse sequence was analysed
using the power law function, kradial / tcd.

Diffusion attenuation curves in the direction perpendicular to
the fibre axis (maximum hindrance) were analyzed in the range
of b 6 7 lm�2 ms after averaging the signal over the two orthogo-
nal directions in the perpendicular plane. We used the following 3
models for the fits: DKM (Eq. 1 in Ref. [33]), LNDM (Eqs. (3)–(5) in
Ref. [29]) and SEM (Eq. (3) in Ref. [27]). The fitting parameters of
diffusivities in DKM, LNDM, and SEM will be denoted as Dk (the
mean diffusivity), Dld (the peak diffusivity), and Dse (the distributed
diffusion coefficient), respectively. Further fitting parameters will
be denoted as K (the mean excess kurtosis in DKM), r (the width
of the distribution function in LNDM), and a (the stretching expo-
nent in SEM). These parameters (K, r and a) characterize the devi-
ation from the Gaussian model. DKM, LNDM and SEM reduce to the
standard Gaussian model when K = 0, r = 0, and a = 1. Two models,
LNDM and SEM, were fitted in the full range of b 6 7 lm�2 ms.
DKM fits were applied in the reduced range, b 6 2.5 lm�2 ms, since
the applicability of this model for higher b-values [25] is limited
due to a truncation of higher orders in the cumulant expansion
of the signal.

3. Results

We observed that the attenuation curves of the diffusion-
weighted signal, S(b), of water in our model system were, in gen-
eral, strongly deviating from the mono-exponential function, and
that the degree of deviations significantly depended on fibre den-
sity. All three applied models, DKM, LNDM, and SEM, provided sat-
isfactory fits for signal amplitudes in the dynamical range of at
least one order of the magnitude, SðbÞ J 0:1. This is demonstrated,
as an example, for two different fibre densities in Fig. 1 showing
the experimental data together with their fits (solid curves), and
the mono-exponential attenuation of the bulk water signal for
comparison. The corresponding fit parameters are indicated in
Table 1.

Fibre densities accessed by our phantom design varied in the
range from 0.46 to 0.71. For the same f, the absolute values of
the fitted diffusivities, Dk, Dld, and Dse, were slightly different, with
the largest one for Dk and the smallest one for Dse. These

Fig. 1. Typical attenuation curves of the diffusion-weighted signal for two different
fibre densities together with their fits (solid curves) using DKM, LNDM, and SEM.
The fit parameters are indicated in Table 1. Exponential attenuation of the bulk
water signal with D0 = 2.3 lm2 ms�1 is shown for comparison.
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