
Influence of thermal sensitivity of the pad and disk materials on the
temperature during braking☆

A.A. Yevtushenko, M. Kuciej, E. Och
Bialystok University of Technology, 45C Wiejska Street, Bialystok 15-351, Poland

a b s t r a c ta r t i c l e i n f o

Available online 2 May 2014

Keywords:
Braking
Frictional heating
Thermosensitivity
Temperature

The transient frictional heating of pad–disk tribosystem at single braking is under consideration. To determine
the average friction surface temperature, the one-dimensional thermal problem of friction at braking has been
formulated. The linear dependence of the thermophysical properties of the disk and padmaterials on the temper-
ature has been taken into account. Model of materials with a simple nonlinearity has been adopted, i.e. materials
in which coefficients of heat conduction and specific heat depend on the temperature, and their ratio – coefficient
of thermal diffusivity– is constant. Linearization of the corresponding boundary-value heat conduction problemby
the Kirchhoff transformation and linearizing parameter method has been performed. The numerical–analytical
solution to the problem has been found by using the integral Laplace transform and the Newton–Raphson
methods. The influence of the thermosensitive materials of titanium pad, sliding over the surface of the disk
made of steel, aluminum alloy or gray cast iron, on the temperature has been studied.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Friction materials used in modern brake systems shall have the
highest possible thermal conductivity and heat capacity. Both of these
parameters contribute to reduce the temperature of friction: thermal
conductivity because of heat dissipation from the surface into the mate-
rial and then to convection surface, while specific heat because of its
absorption [1]. It is well known, that the thermal properties of materials
in heavily loaded friction nodes, which also include disk brakes, are tem-
perature dependent [2]. Therefore, calculations of the thermal regime of
such friction nodes on the basis of linear mathematical models do not al-
ways satisfy the high demands of engineering practice [3]. One way of
improving the adequacy of the description of temperature fields, which
accompany the braking process, is to develop nonlinear mathematical
models of frictional heating, with taking into account thermosensitive
materials of friction pair, i.e. dependence of thermophysical properties
of materials on temperature [4]. Mathematical models of frictional
heating of thermosensitive bodies are represented by nonlinear bound-
ary heat conduction problem, where temperature fields in each body
are conjugated by using the boundary conditions on the friction surface.
Exact solution to such problems can be obtained in the simplified formu-
lation by introducing a priori the heat partition ratio, i.e. division of heat
fluxes between the friction elements and next, consideration of each
body separately with heating of their working surfaces by frictional

heat fluxes with given intensity [5,6]. Usually, the solution of nonlinear
thermal problems of friction at braking is obtained by numerical
methods (mainly using FEM) [7–9]. Verification of the results obtained
on the basis of FE simulation is usually performed by comparing them
with the corresponding experimental data. The process of obtaining
data, especially in the lastmethod, is relatively long and costly. Therefore,
currently this is an important scientific problem to improve the existing
method and to develop new numerical and analytical methods to solve
thermal problems of friction for thermosensitive bodies.

The purpose of this article is to obtain a numerical–analytical solution
of the thermal problem of friction during braking for thermosensitive
disk and pad.

2. Statement of the problem

Let us suppose, that at some point in time, which is taken as the
initial t = 0, a pad (semi-space z ≤ 0) is pressed to a working surface
of a brake disk (semi-space z ≥ 0) by a constant pressure in a direction
parallel to the z-axis of the Cartesian coordinate system Oxyz (Fig. 1).
The sliding velocity of the pad on the disk working surface in the posi-
tive direction of the y-axis decreases linearly V(t) = V0(1 − t/ts) and
0 ≤ t ≤ ts, where V0 is the initial velocity and ts is the stop time. Due
to the friction on the friction surface z = 0 the heat is generated and
the bodies are heated. We assume that:

1) The sum of the intensities of heat fluxes, directed along the normal
to the surface of contact inside the semi-spaces, is equal to the spe-
cific power of friction q(t) = f V(t)p0 [10], where f is the coefficient
of friction;
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2) The thermal contact of bodies is imperfect, i.e. the heat transfer takes
place through the friction surfacewith a constant coefficient of ther-
mal conductivity of contact h [11];

3) The pad and the disk are made of materials in which coefficients of
thermal conductivity Kl and specific heat cl, linearly depend on the
temperature Tl and l = 1,2, and their ratio – the coefficient of ther-
mal diffusivity – is constant (materials with simple nonlinearity
[12]):

Kl Tlð Þ ¼ Kl;0 K�
l Tlð Þ; cl Tlð Þ ¼ cl;0 c�l Tlð Þ; ð1Þ

where

Kl;0 ≡ Kl T0ð Þ; cl;0 ≡ cl T0ð Þ; K�
l Tlð Þ≈ c�l Tlð Þ ¼ 1þ λl Tl−T0ð Þ; ð2Þ

4) The densities of materials ρl and l = 1,2 are constant.

Here and further the quantities relating to the disk and the pad, have
subscripts l = 1 and l = 2, respectively.

Taking into account the assumptions mentioned above we find the
distribution of non-stationary temperature fields Tl(z,t) and l = 1,2 in

the disk and in the pad from solution to the following heat problem of
friction:
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Let us denote:
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a
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wherea ¼ 1:73
ffiffiffiffiffiffiffiffiffiffiffiffi
k2;0ts

q
is the effective depth of heat penetration into the

disk [1] and q0 = fV0p0.
Taking into account formulas (1), (2), (8) and (9), the nonlinear

boundary-value heat conduction problem (3)–(7) can be written in
dimensionless form:
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Nomenclature

a effective depth of heat penetration;
Bi Biot number;
c specific heat;
erf(x) Gauss error function;
erfc(x) = 1 − erf(x)
complementary error function;
ierfc(x) = π−1/2 exp(−x2) − x erfc(x)
integral of the error function erfc(x);
f frictional coefficient;
h coefficient of thermal conductivity of contact;
K coefficient of thermal conductivity;
k coefficient of thermal diffusivity;
p0 pressure;
q(t) specific power of friction;
T temperature;
T0 initial temperature;
Ta temperature scaling factor;
T∗ dimensionless temperature;
t time;
ts stop time;
V0 initial sliding velocity;
V(t) sliding velocity;
z spatial coordinate.

Greek symbols
ρl densities of materials;
Θ Kirchhoff's variable;
τ dimensionless time (Fourier's number);
τs dimensionless stop time;
ζ = z/d dimensionless spatial coordinate;
κ linearizing parameter;
λ coefficient.

Subscripts
1 the upper semi-space;
2 the bottom semi-space.

Fig. 1. Scheme of the problem.
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