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An investigation ismade for steady free convection about a verticalflat plate embedded in a saturatedporousme-
dium due to a convectively heatedwall. With the boundary layer theory, the governing equations describing the
momentum and energy conservations are reduced to a couple of ordinary differential equations with convective
boundary conditions. The exact solutions are then obtained analytically. The velocity and temperature distribu-
tions, as well as the local Nusselt number are presented and analyzed. The current analysis is then applied to the
convective heat transfer about a dike intruded in an aquifer and the relevant physical quantities are calculated
and discussed.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Investigations of natural convection heat transfer from a vertical
plate embedded in various fluids have been done by many researchers
owing to their important applications in many engineering and indus-
trial progresses, such as the storage of radioactive nuclear materials,
ground water pollution, insulation of building and cold storage, drying
processes, transpiration cooling, powder metallurgy, agriculture engi-
neering and so on. Among these works, Cheng and Minkowycz [1]
made an analysis on the free convection about a vertical flat plate em-
bedded in a saturated porous medium. Their results were found to be
very accurate for large Rayleigh numbers. They then applied their anal-
ysis to convective heat transfer about an isothermal dike intruded in an
aquifer. Cheng and Minkowycz's problem [1] was included into the
book by Bejan [2] as an exemplificative configuration and solution to il-
lustrate. Cheng and Minkowycz's problem [1] was extended to various
cases of heat and mass transfer by Bejan and Khair [3], Nield and
Bejan [4], Chamkha and Quadri [5], and Chamkha and Pop [6]. The ex-
tension of Cheng and Minkowycz's problem [1] to nanofluids was
made by Nield and Kuznetsov [7,8], etc.

Recently, Aziz [9] investigates the classical problem of hydrodynam-
ic and thermal boundary layers over a flat plate in a uniform stream of
fluid with a convective surface boundary condition in the framework
of the boundary layer approximations. Aziz [10] then considered the

hydrodynamic and thermal slip flow boundary layers over a flat surface
with constant heat flux boundary condition. Ishak [11] provided the
similarity solutions for flow and heat transfer over a permeable surface
with convective boundary condition. Makinde and Aziz [12] and
Makinde [13,14] investigated thebuoyancy effects on thermal boundary
layer over a vertical plate subject a convective surface boundary condi-
tion. Hayat [15] analyzed the steady flowof anEyring Powell fluid over a
moving surface with convective boundary conditions using the
homotopy analysis method (HAM) [16–20]. Very recently Lok et al.
[21] and Merkin et al. [22] have studied the steady mixed convection
flow past a vertical flat plate embedded in a porous medium subject
to a convective boundary condition. However, the present problem re-
fers to the case of a free convection with a convective boundary condi-
tions using HAM technique.

The purpose of the present work is to study the steady free convec-
tion past a vertical flat plate embedded in a saturated porous medium
with a convective boundary condition and to apply it to convective
heat transfer about a dike intruded in an aquifer. It is found that
when the convective heat transfer coefficient of the wall is proportional
to x−1/2, similarity solutions can be obtained via a set of similarity
transformations. The reduced governing equations describing the
momentum and energy conservations are then formulated and solved
analytically using the optimal HAM technique (OHAM) [23]. The
velocity and temperature distribution, as well as the boundary layer
thickness, and the Nusselt number are presented and discussed.

2. Mathematical formulation

Consider the steady free convection about a vertical flat sheet em-
bedded in a saturated porous medium. As shown in Fig. 1, the fluid is
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divided into two parts by a plate with the fluid temperature in the left
side being Tf and the fluid temperature in the right side being T∞. The
plate is heated or cooled by convection of the fluid in the left side.
The Cartesian coordinate system (x, y) is chosen with the x-axis being
measured along the plate and the y-axis being normal to it. With the
assumptions that (1) the fluid and the porous medium are everywhere
in local thermodynamic equilibrium, (2) the temperatures for fluids in
both sides of the plate are below boiling point, (3) properties of the
fluid and the porous medium are constant, (4) the fluid and the porous
medium are isotropic, and (5) the Boussinesq approximation is applied,
the governing equations for this problem can then be written as (see
Cheng and Minkowycz [1])
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subject to the following boundary conditions as suggested by Aziz [9]

v ¼ 0 ; −km
∂T
∂y x;0ð Þ ¼ hf xð Þ T f−T x;0ð Þ

h i
at y ¼ 0; ð6Þ

u→0 ; T→T∞ as y→∞; ð7Þ

where u and v are Darcy's velocity in the x and y directions respectively,
p is the pressure, T is the temperature, μ, ρ, and β are, respectively, the
dynamic viscosity, the density and the thermal expansion coefficient
of the fluid, K is the permeability of the saturated porous medium, g is
the acceleration due to gravity, ρ∞ is the density of the ambient fluid,
α = km/(ρ∞Cp)f is the equivalent thermal diffusivity with km being the
thermal conductivity of the saturated porous medium and Cp being
the specific heat of the fluid, and hf(x) is the heat transfer coefficient
due to Tf.

We introduce the following similarity transformations

ψ ¼ αRax
1=2 f ηð Þ; θ ηð Þ ¼ T−T∞

T f−T∞
; η ¼ y

x
Rax

1=2
; ð8Þ

where ψ(x, y) is the stream function defined in a usual form as u =
∂ψ/∂y and v = −∂ψ/∂x, Rax = ρ∞Kβg(Tf − T∞)x/(αμ) is the modified
local Rayleigh number in a porous medium.

Based on the above similarity variables, the velocity components for
u and v are expressed by
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∂y ¼ ρ∞gβ T f−T∞
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Nomenclature

Tf fluid temperature in the left side
T∞ fluid temperature in the right side
x dimensional axis being measured along the plate
y dimensional axis being normal to the plate
u Darcy's velocity in the x directions
v Darcy's velocity in the y directions
p pressure
T temperature
K permeability of the saturated porous medium
g acceleration due to gravity
km thermal conductivity of the saturated porous medium
Cp specific heat of the fluid
hf(x) heat transfer coefficient due to fluid temperature
Rax modified local Rayleigh number in a porous medium
η dimensionless variable
f dimensionless function dependent in terms of stream

function
Ek error function
Nux local Nusselt number
qw(x) local surface heat flux through the wall
Q overall surface heat transfer rate for a flat plate
S span dimension of the sheet
Nu average Nusselt number
h average heat transfer coefficient
Ra Rayleigh number
μ dynamic viscosity of the fluid
ρ density of the fluid
β thermal expansion coefficient of the fluid
ρ∞ density of the ambient fluid
α equivalent thermal diffusivity
ψ stream function
γ constant
θ dimensionless temperature
δ boundary layer thickness

Fig. 1. Physical configuration and coordinate system.
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