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A B S T R A C T

Successful integration of carrier selective contacts (so-called passivated contacts) in p-type and n-type front-and-back contact (FAB) silicon solar cells could lift cell
efficiencies to above 24% in mass production. In this work, we introduce one of SERIS’ monoPoly FAB cell structures, which features the monofacial (single-sided)
application of a polysilicon (poly-Si) layer. Using industrial tools, doped poly-Si on an ultrathin interface oxide is shown to provide extremely low recombination
current density of 4 fA/cm2 and implied open-circuit voltage of about 745mV that are able to withstand the high-temperature firing process of screen-printed metal
contacts. The interface oxide and the doping concentration of the poly-Si film are of great importance for the surface passivation quality and the transport of majority
carriers, especially for fire-through screen-printed contacts as used in this work. Our initial pilot-line results show a very promising cell efficiency of 21.4% on large-
area (244.3 cm2) n-type monocrystalline wafers with screen-printed and fire-through metal contacts on both sides. A roadmap for nFAB monoPoly cells towards 24%
efficiency is presented on the basis of an optimisation of the device architecture and various processing steps.

1. Introduction

Global photovoltaic (PV) production continues to be dominated by
p-type crystalline silicon (c-Si) cell technologies [1]. Despite continual
improvements in screen-printed passivated emitter and rear cells
(PERC), it is apparent that the path towards even higher commercial
device efficiencies (> 22%) must be through the use of more advanced
processes, as evidenced by the monocrystalline silicon efficiency re-
cords achieved in recent years [2–6]. The use of n-type Czochralski (Cz)
substrates seems advantageous as these wafers feature higher bulk
lifetimes than p-type Cz wafers and could enable higher open-circuit
voltages (VOC) and thus provide a path towards higher efficiency. n-type
devices are believed to have the additional advantage of being un-
affected by the light-induced degradation problem caused by boron-
oxygen complexes [7]. It is for these reasons that the ITRPV predicts
that n-type c-Si devices will account for> 25% of global PV production
by 2027 [1].

In SERIS, front-and-back contact (FAB) cells are referred to as nFAB
or pFAB cells, depending on the polarity of the substrate (n-type or p-
type). These structures can be monofacial or bifacial. Until mid-2017,
the best fully screen-printed commercial n-type c-Si cells had effi-
ciencies of about 21%, using H-patterned contacts on both sides and a
homogenous emitter and phosphorus-doped back-surface field (BSF),
the latter achieved either with thermal diffusion or with ion im-
plantation. Progress towards higher efficiencies (> 24%) in mass

production will likely come from suppression of recombination at the
front and, particularly, the rear c-Si surfaces, including recombination
losses at the metal-silicon contacts. Passivated contacts using doped
poly-Si have recently gained considerable interest as a possible solution
to this problem [5]. An interface oxide (iOx) layer separating the silicon
absorber and the contact system appears to be the mandatory in-
gredient for ultra-high efficiency silicon solar cells, as used for many
years in heterojunction cells [2,3] and, very likely, also in SunPower’s
interdigitated back contact cells [4], although none of these cells uses
high-temperature fire-through contacts. The metal-insulator-semi-
conductor (MIS) solar cells [8,9] also used a thin insulator between the
semiconductor and the metal in order to reduce recombination losses,
while retaining charge carrier selectivity. The introduction of passi-
vated contacts to high-volume screen-printed solar cell manufacture is,
hence, very appealing and at the same time challenging. It requires the
passivated contact to be thermally stable when metallized with an in-
dustrial screen-printing process that includes commercially available
fire-through pastes. It also requires high-throughput and low-cost de-
position schemes for the passivated contacts preferably with minimal
additional process steps, for example with single-side deposition and
multi-layer deposition within a single system.

Although there is a large variety of materials that can be im-
plemented in a carrier-selective passivated contact (see the summary in
Ref. [10]), one combination which has demonstrated successful results
is an ultrathin (1–2 nm) silicon oxide (SiOx) iOx layer capped by an n-
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type (phosphorus-doped) polycrystalline silicon layer [hereafter re-
ferred to as poly-Si (n+)] for large-area fire-through screen-printed
contacts [11]. Interface oxide films can be grown using several
methods, usually wet chemically [12–15], by thermal oxidation, or by
ALD [16,17]. SERIS’ monoPoly FAB cell structure features polysilicon
(poly-Si) contacts at the front or at the rear side of the c-Si substrate that
can be either electron or hole-selective. The emitter could be either at
the front or at the rear side. The cell structure with bifacial polysilicon
(poly-Si) contacts is referred to as biPoly FAB cell (not presented in this
paper). The substrates can be either multicrystalline or monocrystalline
wafers with either n-type or p-type polarity. An example for a monoPoly
FAB cell with front boron emitter and rear-side poly-Si (n+) contact, as
investigated in this work, is shown in Fig. 1. In this paper, we report our

initial results on SiOx iOx layers grown in-situ by a low-pressure che-
mical vapour deposition (LPCVD) process. monoPoly solar cell results
achieved in SERIS’ R&D pilot cell line are then presented, followed by a
roadmap towards 24% monoPoly cell efficiency in mass production.

Fig. 2 shows examples of process flows used for the fabrication of
classical nFAB cells and monoPoly FAB cells using n-type or p-type
substrates and a poly-Si layer at the rear. Process flow A is a simple
bifacial nFAB process with a homogeneous emitter and a homogeneous
BSF – based on the so-called Passivated Emitter and Rear Totally Dif-
fused (PERT) structure - with merely 8 steps. There are also ways to
avoid the masking step, however, this is not part of the scope of this
paper. This cost-effective nFAB cell with commercial material (wafer
material, pastes) properties available today has an efficiency potential
of about 21.5% with a homogeneous emitter and BSF, each having a
screen-printed H-pattern electrode with 5 busbars. Recombination at
the rear n+-BSF (both passivated and metal-contacted regions) and
within the n+ layer is the main limiting factor that prevents this cell
structure from reaching very high efficiencies (i.e. > 22%). Process
flows B and C introduce iOx and hydrogenated poly-Si layers at the rear
side that can significantly reduce overall recombination and at the same
time maintain good majority carrier transport. The main difference
between B and C is the method of deposition. B uses a tube-based
LPCVD process, while C uses a single-sided PECVD process. Another
difference is the need for a mask and an alkaline wet-chemical step to
etch polysilicon wrap-around in process flow B, which is not needed in
process flow C. The poly-Si layers can be in-situ doped or ex-situ doped
(diffused or implanted), based on manufacturers’ preferences.

2. Experimental details

SERIS’ c-Si photovoltaic R&D focuses on large-area (6 in. - M0, M1,
M2 and M4 sizes) p- and n-type Si wafers as used by solar cell manu-
facturers in high-volume production. In this work, we report our initial
results using process flow B of Fig. 2. We limit the results to process B
mainly due to page restrictions. n-type (170 µm, 2Ω cm,< 100 >) Cz

Fig. 1. Schematic of an n-type bifacial monoPoly silicon solar cell structure
with an electron-selective passivated contact at the rear.

Fig. 2. (A) Simple process flow to fabricate SERIS’ bifacial nFAB cells. Presently, such cells have about 21.5% efficiency potential in mass production, with a
homogeneous emitter and a homogeneous BSF. (B) Preliminary process flow at SERIS to fabricate monoPoly FAB cells with a rear poly-Si layer deposited by a LPCVD
process. (C) Preliminary process flow at SERIS to fabricate monoPoly FAB cells with a rear poly-Si layer deposited with a ‘single-sided’ PECVD process. Process flows
B and C are estimated to have efficiency potentials of 24% in mass production.
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