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This work investigates the influence of porosity and thermal conductivity ratio on the Nusselt number of a cavity
filed with a fluid saturated porous substrate. The flow regime considered intra-pore turbulence and a
macroscopic k-ε model was applied. Heat transfer across the cavity assumed the hypothesis of thermal
equilibrium between the solid and the fluid phases. Transport equations were discretized using the control-
volume method and the system of algebraic equations was relaxed via the SIMPLE algorithm. Results showed
that when using the one energy equation model under the turbulent regime, simulated with a High Reynolds
turbulence model, the cavity Nusselt number is reduced for higher values of the ratio ks/kf as well as when the
material porosity is increased. In both cases, conduction thorough the solid material becomes of a greater
importance when compared with the overall transport that includes both convection and conduction
mechanisms across the medium.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Thermal convection in porous media and the parameters that affect
heat transfer across a heterogeneous medium have been studied
extensively in recent years. There are several applications in industry
for this type of technology. Examples are studies on grain storage,
optimization of solar collectors design, safety of nuclear reactors and
design of porous burners for industrial furnaces, to mention a few.
Traditionally, modeling of macroscopic transport for incompressible
flows in porous media has been based on the volume-average meth-
odology [1–4]. Additionally, if the flow fluctuates in time, the literature
presents a number of time- and volume-averaging techniques that
follow distinct sequences when applying both averaging operators
[5–11]. Recently, a concept named double decomposition [12] showed
that the sets of macroscopic mass transport equations are equivalent,
regardless of the order of application of the averaging operators.

When buoyancy forces are of concern, natural convection occurs in
enclosures as a result of gradients in densities which, in turn, are due
to variations in temperature or mass concentration within themedium.

For clear cavities, the first turbulence model introduced for
calculating buoyant flows was proposed by Markatos and Pericleous
[13]. They performed steady 2-D simulations for Ra up to 1016 and
presented a complete set of results. Ozoe et al. [14], in the light of the
same model adopted by [13], applied it to 2D calculations up to Ra=
1011. Henkes et al. [15] compared two different turbulence models for
2D calculations, namely the standard High Reynolds k-ε closure as

well as the Low–Reynolds number form of the model. Further, Fusegi
et al. [16] presented 3D calculations for laminar flow for Ra up to 1010

in a cube. The results revealed that the behaviors of the flow and
comparisons were made with 2D simulations. The differences were
reported considering heat transfer correlation between Nu and Ra for
2D and 3D cases. Later, Barakos et al. [17] also studied the problem of
natural convection flow in a clean square cavity. The k-ε model has
been used for modeling turbulence with and without wall functions.

For cavities fitted with a porous material, the problem of free
convection in enclosures with distinct temperatures applied on each
side of the cavity has been shown to represent a number of engineering
systems of practical relevance. The monographs of Nield and Bejan [18]
and Ingham and Pop [19] fully document natural convection in porous
media. In addition, several articles published in the literature made
important contributions to the understanding of this problem [20–26].
Baytas and Pop [27] considered a numerical study of steady free
convection flow in rectangular and oblique cavities, filled with homo-
geneous porous media using a nonlinear axis transformation. The
Darcy momentum and energy equations were numerically solved
using the (ADI) method.

In the work of Braga and de Lemos (2004) [28], an approximate
critical Rayleigh was proposed comparing the behavior of Laminar and
High Reynolds turbulence model solutions. The geometry there
investigated was a square cavity totally filled with a porous material,
which was heated from the left and cooled from the opposing side.
Also worth to mention is that the work in [28] was based on the local
thermal equilibrium (LTE) hypothesis, which considers one unique
temperature for both the fluid and the solid porous material. Other
cases not involving gravity driven motion [29] have also been analyzed
with the laminar version of the LTE model detailed in [12]. Further, in
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[28] it was also shown that lowDarcynumbers impact in higher average
Nusselt numbers at the hot wall. However, in reference [28] simulations
were limited to a single solid-to-fluid thermal conductivity ratio,
ks/kf=1, and a single porosity value, ϕ=0.8.

Motivated by the foregoing work, the contribution of this work is to
extend the findings in [28] varying now the ratio ks/kf and the porosity
ϕ. The turbulence model here adopted is the macroscopic k-ε with
wall function in addition to the Low Reynolds number version of the
model. The findings herein broaden the simulations presented earlier
in [28] since a greater number of heterogonous systems are now
investigated, leading to the analysis and optimization of a wider range
of practical engineering systems.

2. The problem under consideration

The problem considered is showed schematically in Fig. 1a and
refers to a square cavity with sides L=H=1m completely filled with
a porous medium. The cavity is isothermally heated from the left, TH,
and cooled from the opposing side, TC. The other twowalls are thermally
insulated. These boundary conditions are widely applied when solving
buoyancy-driven cavity flows. The porous medium is considered to be
rigid and saturated by an incompressible fluid. The modified Rayleigh
number, Ram, is a dimensionless parameter used in porous media

Nomenclature

Latin characters
cF Forchheimer coefficient
c′s Non-dimensional turbulence model constants
cp Specific heat
D Deformation rate tensor, D=[∇u+(∇u)T]/2
Da Darcy number, Da ¼ K

H2

D Particle diameter, D
g Gravity acceleration vector
Gi Generation rate of 〈k〉i due to the action of the porous

matrix
Gβ
i Generation rate of 〈k〉i due to buoyant effects

h Heat transfer coefficient
H Cavity height
I Unit tensor
K Permeability, K ¼ D2ϕ3

144 1−ϕð Þ2
k Turbulent kinetic energy per unit mass, k ¼ u′ � u′=2
kf Fluid thermal conductivity
ks Solid thermal conductivity
Kdisp Conductivity tensor due to thermal dispersion
Kdisp,t Conductivity tensor due to turbulent thermal dispersion
Kt Conductivity tensor due to turbulent heat flux
Ktor Conductivity tensor due to tortuosity
L Cavity width
Nu Nusselt number, Nu ¼ hL

�
keff

Pi Production rate of 〈k〉i due to gradients of uD

Pr Prandtl number
Raf Macroscopic Fluid Rayleigh number, Raf ¼ gβϕH

3ΔT
v f αeff

Ram Darcy–Rayleigh number, Ram=Raf ⋅Da= gβϕHΔTK
ν f αeff

Racr Critical Rayleigh number
ReD Reynolds number based on the particle diameter, ReD ¼

ρ uDj jD
μ f

T Temperature
u Microscopic velocity
uD Darcy or superficial velocity (volume average of u)

Greek characters
α Thermal diffusivity
β Thermal expansion coefficient
ΔV Representative elementary volume
ΔVf Fluid volume inside ΔV
ε ε ¼ μ∇u′ : ∇u′ð ÞT=ρ, Dissipation rate of k
μ Dynamic viscosity
μt Microscopic turbulent viscosity
μtϕ Macroscopic turbulent viscosity
ν Kinematic viscosity
ρ Density
σ′s Non-dimensional constants
ϕ ϕ ¼ ΔV f

�
ΔV , Porosity

Special characters
φ General variable
φ Time average
φ′ Time fluctuation
〈φ〉i Intrinsic average
〈φ〉v Volume average
iφ Spatial deviation
|φ| Absolute value (Abs)
φ General vector variable
φeff Effective value of φ, φeff=ϕφf+(1−ϕ)φs

φs,f solid/fluid
φH,C Hot/cold
φϕ Macroscopic value
()T Transpose
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Fig. 1. a) Geometry under consideration; b) 80 × 80 stretched grid.
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