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In this article natural convection flows have been studied within trapezoidal cavities where left wall of the
cavity is hot and right wall is maintained at constant cold temperature while the top and bottom walls are
adiabatic. The results are presented in terms of streamlines, heatlines, isotherms, entropy generation due
to fluid friction, entropy generation due to heat transfer, average Bejan number, total entropy generation
and average Nusselt number. It may be concluded that, the trapezoidal cavity with φ = 60° is the optimal
shape for thermal processing at Pr = 0.015 whereas square cavity (φ = 90°) is the optimal design for the
thermal processing at Pr = 7.2 based on lower Stotal and higher Nul .

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Free convection phenomenon has been studied extensively due to
its various engineering applications, such as electronic cooling [1],
geothermal [2], solar collector [3], thermal energy storage [4] etc. Sev-
eral investigations have been conducted on free convection within
square and trapezoidal cavities [5–8]. However, most of the above
studies are based on streamlines and isotherms and the detailed
analysis of heat flow is not well understood. Kimura and Bejan [9]
proposed heatline concept to analyze heat flow patterns in two di-
mensional convective heat transport process. Recently, the heatline
concept is used to understand heat flow patterns within square cavity
with multiple discrete heat source-sink pairs [10], horizontal planar
square cavity with discrete heat sources flush-mounted on its bottom
wall [11], two dimensional square cavity with wavy right wall [12].

Eventhough, the above investigations are carried out to under-
stand the flow and isotherm patterns within enclosures, these studies
are unable to explain the thermal efficiency of the system. In order to
improve the system thermodynamically, a new methodology called
as exergy analysis and its optimization tool entropy generation mini-
mization is introduced. Entropy generation minimization results in
minimum irreversibilities associated with the process and thus the
overall efficiency of the system is increased. Therefore by analyzing
the entropy generation due to heat transfer and fluid flow irrevers-
ibilities, the strategies to optimize the process may be achieved to in-
crease the overall efficiency of the system. Bejan [13–15] introduced

entropy generation minimization concept based on the second law
of thermodynamics. Significant amount of work has been done on
entropy generation minimization for various applications [16–18].
Famouri and Hooman [16] investigated entropy generation for natu-
ral convection in a partitioned cavity where vertical walls are isother-
mally cooled and horizontal walls are adiabatic. Mukhopadhyay [17]
studied entropy generation due to natural convection in a square en-
closure heated locally from below with two isoflux heat sources. Ilis
et al. [18] analyzed entropy generation in rectangular cavities with
the same area but different aspect ratios. Till date, analysis on entropy
generation during natural convection within trapezoidal cavities in
the presence of hot and cold side walls with adiabatic horizontal
walls is yet to appear in literature.

The objective of the present investigation is to analyze the heat
flow visualization on heatline approach and entropy generation dur-
ing natural convection within trapezoidal cavities whereas the left
wall is hot and right wall is maintained at constant cold temperature
while the top and bottomwalls are adiabatic. In the current study, the
Galerkin finite element method has been employed to solve the
nonlinear equations of fluid flow, energy and entropy.

2. Mathematical modeling and simulation

Let us consider a trapezoidal cavity with the right wall inclined at
an angle φ = 30°, 60° and 90° with the X-axis as seen in Fig. 1a–c, re-
spectively. The boundary conditions for velocities are considered as
no-slip on solid boundaries. The fluid is considered as incompressible,
Newtonian and the flow is assumed to be laminar. For the treatment
of the buoyancy term in the momentum equation, Boussinesq ap-
proximation is employed for the equation of the vertical component
of velocity to account for the variations of density as a function of
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temperature and to couple in this way the temperature field to the
flow field. The governing equations for steady natural convection
flow using conservation of mass, momentum and energy in dimen-
sionless form can be written as:

∂U
∂X þ ∂V

∂Y ¼ 0 ; ð1Þ

U
∂U
∂X þ V

∂U
∂Y ¼ −∂P

∂X þ Pr
∂2U
∂X2 þ ∂2U

∂Y2

 !
; ð2Þ

U
∂V
∂X þ V

∂V
∂Y ¼ −∂P

∂Y þ Pr
∂2V
∂X2 þ

∂2V
∂Y2

 !
þ Ra Pr θ; ð3Þ

U
∂θ
∂X þ V

∂θ
∂Y ¼ ∂2θ

∂X2 þ
∂2θ
∂Y2 : ð4Þ

where

X ¼ x
L
; Y ¼ y

L
;U ¼ uL

α
;V ¼ vL

α
; θ ¼ T−Tc

Th−Tc
;

P ¼ pL2

ρα2 ; Pr ¼ ν
α
; Ra ¼ gβ Th−Tcð ÞL3

να
; ð5Þ

with following boundary conditions

U ¼ 0;V ¼ 0;
∂θ
∂Y ¼ 0;∀Y ¼ 0;0≤X≤1

U ¼ 0;V ¼ 0; θ ¼ 1;∀Xsin φð Þ þ Ycos φð Þ ¼ 0;0≤Y≤1
U ¼ 0;V ¼ 0; θ ¼ 0;∀Xsin φð Þ−Ycos φð Þ ¼ sin φð Þ;0≤Y≤1

U ¼ 0;V ¼ 0;
∂θ
∂Y ¼ 0;∀Y ¼ 1;−cot φð Þ≤X≤1þ cot φð Þ

ð6Þ

The momentum and energy balance equations (Eqs. (2)–(4)) are
solved using the Galerkin finite element method. The continuity
equation (Eq. (1)) is used as a constraint due to mass conservation
and this constraint may be used to obtain the pressure distribution.
In order to solve Eqs. (2) and (3), we use the penalty finite element
method where the pressure, P, is eliminated by a penalty parameter
γ and the incompressibility criteria given by Eq. (1) as results in

P ¼ −γ
∂U
∂X þ ∂V

∂Y

� �
: ð7Þ

The continuity equation (Eq. (1)) is automatically satisfied for
large values of γ. Typical values of γ that yield consistent solutions
are 107. Using Eq. (7), the momentum balance equations (Eqs. (2)
and (3)) reduce to

U
∂U
∂X þ V

∂U
∂Y ¼ γ

∂
∂X

∂U
∂X þ ∂V

∂Y

� �
þ Pr

∂2U
∂X2 þ ∂2U

∂Y2

 !
; ð8Þ

and

U
∂V
∂X þ V

∂V
∂Y ¼ γ

∂
∂Y

∂U
∂X þ ∂V

∂Y

� �
þ Pr

∂2V
∂X2 þ

∂2V
∂Y2

 !
þ Ra Pr θ : ð9Þ

The system of equations (Eqs. (4), (8) and (9)) with appropriate
boundary conditions (Eq. (6)) are solved using Galerkin finite ele-
ment method [19]. Since the solution procedure is explained in an
earlier work [20], the detailed description is not included in this
paper. The numerical solutions are obtained in terms of the velocity
components (U,V).

2.1. Streamfunction, Nusselt number, heatfunction and entropy generation

The streamfunction (ψ) is evaluated using the relationship be-
tween the streamfunction (ψ) and the velocity components, where
the streamfunction (ψ) is defined as

U ¼ ∂ψ
∂Y and V ¼ −∂ψ

∂X : ð10Þ

Positive sign of ψ denotes anti-clockwise circulation and clockwise
circulation is represented by negative sign of ψ. The no-slip condition
(ψ = 0) is valid at all boundaries as there is no cross flow. The heat
transfer coefficient in terms of the local Nusselt number (Nu) is de-
fined by

Nu ¼ −∂θ
∂n ; ð11Þ

where n denotes the normal direction on a plane. The local Nusselt
numbers along left wall (Nul) and right wall (Nur) are defined as

Nul ¼ sinφ
∂θ
∂X þ cosφ

∂θ
∂Y

� �
and Nur ¼ − sinφ

∂θ
∂X−cosφ

∂θ
∂Y

� �
:ð12Þ

Nomenclature

Be Bejan number
g Acceleration due to gravity, m s−2

L Length of the square cavity, m
Nu Local Nusselt number
Nu Average Nusselt number
p Pressure, Pa
P Dimensionless pressure
Pr Prandtl number
Ra Rayleigh number
Sψ Dimensionless entropy generation due to fluid friction
Sθ Dimensionless entropy generation due to heat transfer
Stotal Dimensionless entropy generation due to fluid friction

and heat transfer
T Temperature of the fluid, K
Th Temperature of hot left wall, K
Tc Temperature of cold right wall, K
u x component of velocity, m s−1

U x component of dimensionless velocity
v y component of velocity, m s−1

V y component of dimensionless velocity
X Dimensionless distance along x coordinate
Y Dimensionless distance along y coordinate

Greek symbols
α Thermal diffusivity (m2 s−1)
β Volume expansion coefficient (K−1)
γ Penalty parameter
θ Dimensionless temperature
ν Kinematic viscosity (m2 s−1)
ρ Density (kg m−3)
φ Inclination angle with the positive direction of X axis
ψ Dimensionless streamfunction
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