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The vortex dynamics behind variousmagnetic obstacles and characteristics of heat transfer are investigated using
a three-dimensional model. In the numerical study, the magnet width (My) is alterable to investigate the
instability, Strouhal number, wake structure behind various magnetic obstacles and percentage increment of
the overall heat transfer for a wide range of constrainment factors (0.08 ≤ κ ≤ 0.26), Reynolds numbers
(400 ≤ Re ≤ 900) and interaction parameters (9 ≤ N ≤ 15). For all constrainment factors, the fundamental
frequency (f) is uniform for a particular value of Reynolds number. Downstream cross-stream mixing due to
vortex shedding enhances thewall-heat transfer and themaximum value of percentage increment of the overall
heat transfer (HI) is about 20.2%. However, the pressure drop penalty (ΔPpenalty) is not increasingly dependent on
interaction parameter when Re and κ remain constant.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Convection heat transfer has an important role in myriad practical
applications. Examples of forced convection heat transfer and natural
convection heat transfer are very much common in engineering appli-
cations such as tokamak confinement fusion devices, space heating,
cooling towers, power generators, heat losses from high-rise buildings,
heat exchanger, solar collector and other thermal applications [1–5].

The motion of an electrically conducting fluid under an external
magnetic field can induce electric currents, which in turn interact with
the magnetic field resulting in a Lorentz force. This has a significant
effect on the velocity distribution and the turbulence characteristics.
For example, a liquidmetal passing a localizedmagneticfield can exhib-
it some features similar to those observed in ordinary hydrodynamics of
fluid flow around a circular cylinder. These hydrodynamic peculiarities
and prediction of heat transfer for fluid flow around a cylinder, because
of their practical importance in hydrodynamic and heat transfer appli-
cations, have been intensely studied [6–9]. However, the flow around
a magnetic obstacle is a rather new magnetohydrodynamic (MHD)
problem that is not yet qualitatively well understood. Moreover, the
importance of understanding the flow around a magnetic obstacle is
evident because any real magnetic field will be always nonuniform.
Cuevas et al. [10,11] analyzed numerically two-dimensional and
quasi-two-dimensional flow past a local magnetic field at low Reynolds
numbers 100 and 200. However, their results are justified for creeping
systems only and 2D results are questionable for the real system when

Re is high. Votyakov et al. [12,13] thought that the two-dimensional
numerical simulation did not well explore the complex flow structures
of the magnetic obstacle at high Reynolds number. Therefore they
derived, for the first time, the equations of the external magnetic field
and new stationary MHD flow patterns, and compared the results of
3D numerical simulations with physical experiments. Votyakov and
Kassinos [14] reported new recirculation patterns and discuss a funda-
mental difference in 2D and 3D systems with magnetic obstacle, and
explain why 2D simulation reveals multi-vortex effects when N is very
large. Andreev et al. [15] devised an experiment of the liquid metal
past a magnetic obstacle in a rectangular channel and proved that the
interaction parameter N governed the flow when turbulent pulsations
were suppressed by the external magnetic field. Votyakov and Kassinos
[16] reported the unsteady flow past a magnetic obstacle. They showed
the breaking away of attached vortices from the magnetic obstacle
when the Reynolds number was large enough. Zhang and Huang [17]
investigated the effect of blockage ratio on the fluid flow and heat
transfer at constant magnet width. The results show that the value of
Strouhal number increases as the blockage ratio (β) increases, and for
small β the variation of St is very small when the interaction parameter
and Reynolds number are increasing. The maximum of percentage heat
transfer increment is about 50.5% at β = 0.4.

A review of the literatures finds just 10 papers concerning the heat
transfer and vortex shedding characteristics of an electrically conducting
fluid past a magnetic obstacle, compared with the thousands of papers
published for ordinary solid obstacles. Therefore, the aim of the present
work is to study the dynamics and heat transfer characteristics in MHD
channel flow past different magnetic obstacles. In particular, the effect
of constrainment factor (κ = My / Ly, Ly = 0.2) on the structure of the
flow and heat transfer will be investigated.
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2. Numerical modeling

2.1. Setup

The numerical setup is a rectangular duct as shown in Fig. 1 with
a length (Lu + Ld) of 0.75 m, width (Ly) of 0.2 m, and height (Lz) of
0.02 m, respectively. The duct is filled with the eutectic alloy GaInSn
with a typical composition of 68.5% Ga, 21.5% In, and 10% Sn. A Prandtl
number Pr = 0.020 is used throughout. The characteristic length scale
is taken to be the half-channel height (L = Lz/2) and the characteristic
velocity to be the averaged fully developed Poiseuille velocity profile.
Throughout this study, the channel width Ly is fixed and the magnetic
constrainment factor which defines the spanwise distribution of the
magnetic field with κ = My / Ly = 0.08, 014, 0.2 and 0.26 is chosen in
this investigation.

2.2. Governing equations and boundary conditions

The energy/mass balance equations and partial differential equa-
tions derived from the Navier–Stokes equation coupled with the

Maxwell equations for a moving medium and Ohm's law are solved
numerically. In our model it is assumed that the flow is laminar,
incompressible and Newtonian with constant properties. The effect of
Joule heating is neglected. Based on these assumptions, the governing
equations in non-dimensional form become

∇ � V ¼ 0 ð1Þ

∂V
∂τ þ V �∇ð ÞV¼−∇P�þ 1

Re
∇2VþN J� � B�� � ð2Þ

∂Θ
∂τ þ V �∇ð ÞΘ ¼ 1

Pe
∇2Θ: ð3Þ

The induced magnetic field equation under the classical MHD
assumptions can be derived [19]:

∂b�

∂τ þ V �∇ð ÞB� ¼ 1
Rem

∇2b�þ B� �∇� �
V ð4Þ

where B* is the magnetic field intensity (B* = B0⁎ + b*). The applied
magnetic field B0⁎ satisfies themagnetostatic equations [10,13], namely,

∇ � B�
0 ¼ 0 and ∇� B�

0 ¼ 0: ð5Þ

So the induced field implicitly satisfies the equation

∇ � b� ¼ 0: ð6Þ

Once Eq. (4) is solved for the induced magnetic field, the induced
current can be deduced from the Ampere's law, J� ¼ 1

Rem
∇� B�ð Þ. The

following dimensionless variables and parameters have been used:

V¼ u
U
; τ¼ tU

L
; Θ¼ T−T∞

Tw−T∞
; P�¼ P

ρU∞
2 ; J�¼ J

B0σU∞
; B�¼ B

B0
;

Re ¼ UL
ν

; Pe ¼ RePr;

X; Y; Zð Þ¼ x; y; zð Þ
L

; Ha ¼ B0L
ffiffiffiffiffiffi
σ
ρν

r
; N ¼ Ha2

Re
; Rem ¼ μmσUL:

The variables have their usual sense in fluid mechanics and heat
transfer as listed in the nomenclature.

The external magnetic field with a strength B0 can be obtained from
a semianalytical simplification of the Biot–Savart's and Maxwell equa-
tions, Votyakov et al. [13,18]:

Bα x; y; zð Þ ¼ γ
X
k¼�1

X
j¼�1

X
i¼�1

ijkð ÞAα ð7Þ

where α = x, y, z are themagnetic field components, and γ is a normal-
ization constant. The external magnetic field B0 is obtained in such a
way that B0z (0, 0, 0) = B0 with functions:

Ax ¼ artanh
y−0:5 jMy

r i; j; kð Þ
� �

; Ay ¼ ar tanh
�
x−0:5iMx

r i; j; kð Þ
�
;

Az ¼ −arc tan
�

z−0:5kHð Þr i; j; kð Þ
x−0:5iMxð Þ y−0:5 jMy

� �
�
;

r i; j; kð Þ ¼ x−0:5iMxð Þ2 þ y−0:5 jMy

� �2 þ z−0:5kHð Þ2
� �1=2

:

ð8Þ

Nomenclature

B magnetic field vector (T)
B0 applied field vector (T)
b induced magnetic field vector (T)
F Lorentz force (N/m3)
J induced current (A/m2)
P pressure (Pa)
t time (s)
T temperature field (K)
T∞ free stream temperature (K)
Tw temperature of hot channel side-wall (K)
u velocity vector (m/s)
Mx, My, H characteristic magnet dimensions (m)
U the area-averaged inflow velocity (m/s)
L characteristic dimension L = Lz/2 (m)
f vortex shedding frequency (1/s)
τp period of vortex shedding (s)
Nu local Nusselt number
〈Nu〉 surface-averaged Nusselt number
Nu
	 


time and surface-averaged Nusselt number
Ha Hartmann number
St Strouhal number, St ¼ f My

U
Re Reynolds number
N interaction parameter
Rem magnetic Reynolds number
μm magnetic permeability (H/m)
HI percentage increment of heat transfer
Pr Prandtl number

Greek symbols
α thermal diffusivity (m2/s)
K constrainment factor define by My/Ly
ν kinematic viscosity (m2/s)
ρ fluid density (kg/m3)
σ electrical conductivity (1/Ω·m)

Subscripts
w wall
m magnetic
0 absent external magnetic field
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