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a b s t r a c t

We have employed a one-step (direct etching) metal-assisted chemical etching (MACE) technique to
grow large-area Si nanostructures with smoother surface morphology and much less porous Si (PS)
defects than those under the two-step (depositing and etching) MACE. A 17.63%-efficiency of the nano/
microstructures (N/M-Strus) based multicrystalline Si (mc-Si) solar cells has firstly surpassed that
(17.45%) of traditional-micro-textured one with a standard solar wafer size of 156�156 mm2. The key to
success lies in the reduction of electrical loss by removing PS defects and employing shorter one-step-
MACE-smoothened N/M-Strus, together with the optical gain from the combined antireflection of mc-Si
N/M-Strus and SiNx:H thin films. The present work opens a way to the mass production of high efficient
Si nanostructures based solar cells with a less-process-step and lower-cost approach.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Vertically aligned silicon (Si) nanostructure arrays have been
arising great interests in photovoltaic applications, due to the
excellent light-trapping features over a broad range of incident
angles [1–3], which may maximize the light absorption and
achieve improved efficiency (η) of solar cells. Considering the
remaining high reflectance of traditional-micro-textured multi-
crystalline Si (mc-Si) solar cells, the optical superiority of the Si
nanostructures provides an effective approach to obtaining high η
of mc-Si solar cells. However, the optical advantage of Si nanos-
tructures has not been facile to be fully converted into the η-gain
of solar cells [4–15], which is mainly ascribed to the poor electrical
properties, i.e., high recombination on the surface and in the bulk
of Si nanostructures. Over the past several years, substantial pro-
gresses in improvement of the electric performance have been
made by carrying out various process methods such as the surface
passivation [16–20], properly increasing sheet resistance [21,22]
and optimization of morphology of mc-Si nanostructures
[11,13,14,19]. Using the optimized textured structure, Zhong et al.,
[23] and Xiao et al., [24] have reported ηs of 15.99% and 17.46% for

mc-Si nanostructures based solar cells with the standard solar
wafer size of 156�156 mm2 through reactive ion etching (RIE),
respectively. Liu et al., [22] have further improved the performance
of the mc-Si nanostructures based solar cells by employing acidic-
RIE textured technique and high sheet resistance.

As an morphology-easily-controlled method to prepare Si
nanostructures, the widely studied metal-assisted chemical etch-
ing (MACE) has demonstrated promising advantages for mass
productions due to its simplicity, room-temperature process, low
cost, and compatibility with current production lines [5,17,19,20].
Generally, MACE is divided into one-step (direct etching) and two-
step (depositing and etching) MACE, and the difference between
these two methods lies mainly in the less process step and the
absence of H2O2 (oxidant) for the one-step MACE. Up till now,
most of works have focused on two-step MACE, for example,
Huang et al., [25] and Lin et al., [26] have reported ηs of 11.86% and
15.58% for the mc-Si nanostructures based solar cells through the
two-step-MACE technique. Due to the existence of the oxidant
H2O2, the Si nanostructures synthetized by the two-step MACE
have a mass of porous Si (PS) defects, which is detrimental to the
electrical performance of the solar cells. Xie et al., [27] have shown
that the Si nanostructures grown by the two-step MACE with
lower H2O2 concentration have smoother morphology and less PS
defects. In short, compared with the two-step MACE, the one-step
technique without H2O2 is a simpler, less-process-step and lower-
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cost approach to grow large-area Si nanostructures with smoother
surface morphology, and thus possesses more promising applica-
tions to the mass production of Si nanostructures based solar cells.
Using the one-step MACE, Liu et al., [28] have achieved an η of
15.8% on mc-Si nanostructures based 156�156 mm2 solar cells
with a stack passivation of SiO2/SiNx. Hsu et al., [29] have further
improved the η to 16.38% for the 6’’ one-step MACE mc-Si
nanostructures based solar cells. Nevertheless, the conversion
efficiencies of either the two-step or one-step MACE nanos-
tructured silicon solar cells are still far from satisfactory, especially
when compared to the efficiencies of the conventional
counterparts.

In this paper, we have successfully fabricated the mc-Si nano/
microstructures (N/M-Strus) based solar cells with the standard
solar wafer size of 156�156 mm2, by employing one-step MACE
technique. The η of 17.63% is firstly reported to be higher than the
traditional-micro-textured one of 17.45%. The shorter one-step-
MACE-smoothened N/M-Strus have been proved to play a key role
in reducing the electrical loss of N/M-Strus based solar cells, by
suppressing the surface recombination, Auger recombination and
Shockley–Read–Hall (SRH) recombination. Together with the
optical gain from the combined antireflection of the one-step-
MACE N/M-Strus and SiNx:H thin films, the reduced electrical loss
enables higher-than-traditional-micro-textured ηs to be realized.
The present achievement of the improved η displays promising
future for the mass production of the mc-Si nanostructures based
solar cells.

2. Experimental

2.1. Preparation of Si N/M-Strus

p-Type, 200710-mm-thick,�2-Ω cm-resistivity, mc-Si wafers
with the standard solar wafer size of 156�156 mm2 were used for
this work. The mc-Si N/M-Strus consisting of the traditional-
micro-textures and the nanowires were sequentially prepared in
mixed acid solution and MACE solution. The traditional-micro-

textures were firstly prepared in the mixed acid solution
HF:HNO3:DIW¼1:3:2.5 (volume ratio) for �2.5 min at �8 °C.
Subsequently, the mc-Si N/M-Strus were synthetized through the
MACE including the one-step and two-step process as shown in
Fig. 1(a) and (b). For the one-step MACE, the cleaned as-tradi-
tional-micro-textured mc-Si wafers were directly etched to form
the nanostructures on the surface of the traditional-micro-textures
in the etching solution of 4.0 M HF/0.01 M AgNO3 for a certain
time at room temperature. For the two-step MACE, the cleaned as-
traditional-micro-textured mc-Si wafers were firstly dripped in
the aqueous solution of 5.0 M HF/0.02 M AgNO3 for 60–100 s to
obtain the Agþ-deposited layer, and then the Agþ-deposited
wafers were immediately immersed in the mixed solution of 5.0 M
HF and 0.1–1.0 M H2O2 for 60 s at room temperature, to form the
nanostructures. Finally, to wipe off the residual impurities, all the
mc-Si wafers with as-etched N/M-Strus were immersed in the
HNO3:DIW¼1:1 (volume ratio) solution for 20 min, followed by
rinsing with excess copious deionized water and drying with N2.

2.2. Fabrication of one-step-MACE N/M-Strus based mc-Si solar cells

After the standard RCA cleaning, the mc-Si wafers with one-
step-MACE N/M-Strus were placed in a tube furnace to carry out
the one-side (double-sides for some wafers) phosphorous diffu-
sion (Meridian, BTU) with POCl3 liquid source for about 40 min at
�800 °C. The phosphorous silicate glass (PSG) was removed by a
dilute HF solution (9% by volume). After that, the antireflection
and passivation layer of SiNx:H was deposited on the front surface
by plasma enhanced chemical vapor deposition (PECVD) (E2000
HT410-4, Centrotherm) for �40 min at 400 °C, meanwhile the
same SiNx:H layers were deposited on both sides of the double-
side diffused and no-diffused samples for the purpose of testing
the saturation current of the emitter and minority carriers lifetime,
respectively. Finally, a conventional front grid pattern and back
contacts as well as back surface aluminum were performed by the
screen-printing (LTCC, BACCINI), followed by a co-firing step at
750 °C for a short duration.

Fig. 1. Comparison between the one-step and two-step MACE. (a) Process flow of two-step MACE. (b) Process flow of one-step MACE. (c) Schematic morphology of the PS
nanostructures by the two-step MACE. (d) Schematic morphology of the Si nanowires by the one-step MACE. (e) Oblique-view high-resolution SEM image of PS nanos-
tructures by the two-step MACE. (f) Oblique-view high-resolution SEM image of Si nanowires by the one-step MACE. (g) Room-temperature PL spectra of PS nanostructures
by the two-step MACE with different H2O2 concentrations of 0.1 M, 0.2 M, 0.4 M and 1.0 M. The excitation wavelength is 325.0 nm. (h) Near zero room-temperature
luminescence of Si nanowires by the one-step MACE without H2O2.
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