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a b s t r a c t

Non-planar solar cell devices have been promoted as a means to enhance current collection in absorber
materials with charge-transport limitations. This work presents an analytical framework for assessing
the ultimate performance of non-planar solar cells based on materials and geometry. Herein, the physics
of the p-n junction is analyzed for low-injection conditions, when the junction can be considered
spatially separable into quasi-neutral and space-charge regions. For the conventional planar solar cell
architecture, previously established one-dimensional expressions governing charge carrier transport are
recovered from the framework established herein. Space-charge region recombination statistics are
compared for planar and non-planar geometries, showing variations in recombination current produced
from the space-charge region. In addition, planar and non-planar solar cell performances are simulated,
based on a semi-empirical expression for short-circuit current, detailing variations in charge carrier
transport and efficiency as a function of geometry, thereby yielding insights into design criteria for solar
cell architectures. For the conditions considered here, the expressions for generation rate and total
current are shown to universally govern any solar cell geometry, while recombination within the space-
charge region is shown to be directly dependent on the geometrical orientation of the p-n junction.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Contemporary solar cell designs are based on a planar geome-
try, for which charge carrier separation and photon absorption are
approximately one-dimensional within the device. Using one-
dimensional physics for simulating device performance is gener-
ally appropriate for most planar devices, when the solar cell is
approximated as a simple, 1D, p-n junction. There are cases,
however, such as when considering high-efficiency solar cell
designs, (e.g. rear point-contact and/or back-contact solar cells),
that using one-dimensional physics may not truly capture the
intricacies of the device, and 2D/3D finite element methods are
typically used to simulate performance. In addition to factors such
as material and manufacturing costs [1–3], novelty of non-planar
solar cell architectures is grounded in the idea that some non-
planar devices decouple optical and electronic path lengths [4]
and, therefore, offer opportunities to alter the competing roles of
charge carrier collection and recombination within a device, which
limit efficiency for planar cells with low charge carrier mobility
and lifetime. In the last decade, a number of unconventional, non-
planar solar cell designs have been proposed, and some experi-
mentally fabricated [4–13], in efforts to increase energy conversion
efficiencies. To date, however, the “planar” solar cell architecture

still holds all efficiency records over its non-planar counterparts
[14]. While there is substantial information describing analytical
1D device physics of planar solar cells [15–24], a comparatively
small amount of literature is available describing analytical charge
carrier transport properties for non-planar solar cell devices
[14,25–30]. By detailing the device physics of a “geometrically
generalized” solar cell, devices of various geometrical architectures
are modeled congruently to ascertain the conditions under which
non-planar configurations improve efficiency.

Our aim is to develop a simple framework for analytically
calculating solar cell current as a function of voltage for a geome-
trically generalized p-n junction solar cell, analogous to the model
employed to analytically calculate current as a function of voltage for
a planar p-n junction solar cell. The purpose in doing so is to provide
a better practical understanding of charge carrier transport for non-
planar solar cells, and to explain how geometry, alone, can easily, and
significantly, alter solar cell performance. Previous attempts to
compare device performance of cylindrical/radial and planar solar
cells have focused on minority charge carrier diffusion in the quasi-
neutral regions (QNR's) [26–30]. As such, we do not attempt to
improve upon previous efforts solving for minority charge carrier
diffusion current densities in the QNR's and, instead, focus on
developing a generalized curriculum for the constituent components
that govern solar cell I-V characteristics of non-planar geometries.

In the low injection limit, a p-n junction is typically considered to
be spatially separable into two QNR's and a space-charge region
(SCR). We display a spatially generalized p-n junction in Fig. 1, with
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the distinct regions indicated by vector positions r
,
i, i¼ 0;1;2;3, for

the purpose of indicating the spatial orientation of the junction in
this discussion. In addition, we also show proposed energy band
modifications in the SCR, which we explain in further detail in
subsequent sections. In our analysis, a given transport variable
Xðr,Þ in the n-type QNR (nQNR) is implied by the relationship

Xðr,0rr
,rr

,
1Þ � XNðr,Þ, based on the p-n junction shown in Fig. 1.

Likewise, in the SCR, Xðr,1rr
,rr

,
2Þ � XSC ðr,Þ, and in the p-type QNR

(pQNR), Xðr,2rr
,rr

,
3Þ � XPðr,Þ.

2. Theory

2.1. Total device current

The area over which charge extraction occurs for a p-n junction
is a function of position and, therefore, is not necessarily uniform
for non-planar devices. Thus, current density (i.e. charge per unit
time per unit area) is not necessarily conserved for all solar cell
architectures, though it certainly is for the planar geometry [15–
17,20–24]. However, current (i.e. charge per unit time) is funda-
mentally conserved for all geometries. Therefore, we deviate from
traditional methods attempting to model total current density of a
solar cell, and instead focus on calculating total current, because it
is more fundamental to non-planar solar cell performance. To
arrive at an expression for total current of the geometrically
generalized solar cell device, we apply conservation of current at
a specific position along the p-n junction, analogous to the
methodology applied to planar solar cells. However, because
manipulation of the drift-diffusion and continuity equations in
the QNR's yield expressions for current density, not current, we
write conservation of current at a specific position in the p-n
junction in terms of area integrals over current density; i.e.

itotal ¼∬ j
,

n r
,
� �

Uda
,

r
,
� �

þ∬ j
,

p r
,
� �

Uda
,

r
,
� �

: ð1Þ

According to the planar analysis [15–17,20–24], appropriate
positions along the solar cell device to sum the electron and hole
current densities are at either r

,¼ r
,
1 or r

,¼ r
,
2, as these positions

share boundaries with the SCR. By combining conservation of
current density with a charge carrier continuity equation across
the SCR, the expression for total current density becomes a sum of
minority charge carrier current densities from the QNR's, evalu-
ated at the edges of the SCR (positions r

,¼ r
,
1 and r

,¼ r
,
2), and

generation and recombination current densities from across the
SCR [15–17,20–24]. Here, we employ the same methodology, but

now apply it to conservation of current in Eq. (1). In addition, we
re-write Eq. (1) in terms of generalized coordinates, so that the
expression for total current may be utilized by any coordinate
system. In this way, the expression for total current is universal for
all geometrical orientations of a p-n junction, provided that the
junction is established symmetrically along only one axis of a
coordinate system (i.e. current density is flowing parallel to only
one unit vector normal of an area element), and that the low-
injection limit is applicable. For a three dimensional system of
generalized coordinates qi, the position vector r

,
is defined by

r
,¼ ∑

3

i ¼ 1
qiêi ; ð2Þ

the gradient ∇
,

is defined by

∇
,
A¼ ∑

3

i ¼ 1

1

hi r
,
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∂qi
êi ð3Þ

for a scalar A, divergence is defined by

∇
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UB
,
¼ 1

h1 r
,
� �

h2 r
,
� �

h3 r
,
� � ∂

∂q1
h2 r

,
� �

h3 r
,
� �

B1

� ��

þ ∂
∂q2

h1 r
,
� �

h3 r
,
� �

B2

� �
þ ∂
∂q3

h1 r
,
� �

h2 r
,
� �

B3

� ��
ð4Þ

for a vector B
,
, and the infinitesimal area element da

,
r
,
� �

is defined
by

da r
,
� �

n̂¼ ∑
3

i ¼ 1
dai r

,
� �

êi: ð5Þ

For all expressions, the elements êi represent unit vectors, and

hiðr
,Þ represent the coordinate transformation factors (e.g. in

cylindrical coordinates, h1ðr,Þ ¼ 1, h2ðr,Þ ¼ ρ, and h3ðr,Þ ¼ 1).

For conservation of current evaluated at r
,¼ r

,
1, Eq. 1 becomes
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However, from the low injection analysis of the drift-diffusion
and charge continuity equations in the QNR's, no expression for

the majority electron current density j
,

nN ðr
,Þ in the nQNR is readily

available; only minority charge carrier expressions are readily
available in the QNR's. The planar analysis circumnavigates this
issue by determining the majority electron current density at

r
,¼ r

,
1 in terms of the minority electron current density at r

,¼ r
,
2

[15–17,20–24]. To determine the electron current density at r
,¼ r

,
1,

(j
,

nN ðr
,Þj

r
,¼ r

,
1

) in terms of the electron current density at r
,¼ r

,
2,

(j
,

nP ðr
,Þ
����
r
,¼ r

,
2

) the electron continuity equation is integrated across

the SCR, which is equally valid for non-planar p-n junctions when
assuming electron flow along only one coordinate axis q1; i.e.
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Fig. 1. Generalized p-n junction energy band diagram in the low injection limit.
The spatial energy dependence is shown for planar (linear dependence; red),
cylindrical (logarithmic dependence; blue), and spherical (inverse dependence;
black) architectures.
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