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a b s t r a c t

The relationship between the refractive index and the porosity of silica based anti-reflective coatings
(ARCs) has been studied. The coatings were prepared with the traditional Stöber method. The refractive
index was evaluated by fitting vis–NIR transmittance spectra to Fresnel's coefficient of reflection using
the transfer matrix method. The porosity was assessed by a novel method based on image processing of
high resolution scanning electron microscope (SEM) images. Results were compared to the commonly
used Yoldas and Maxwell–Garnett mixing rules. Our results showed better agreement with the Yoldas
mixing rule than with the Maxwell–Garnett mixing rule, which was explained as being due to the
presence of elongated crack shaped pores in the ARCs rather than randomly dispersed spherical
shaped pores, as was evident in the SEM images. Furthermore, we found that despite the presence
of the elongated cracks, the coating appears to behave towards light like a homogenous medium.
This somewhat surprising result calls for further research. Lastly, we have shown that it is reason-
able to assume that the ARC is vertically homogeneous in terms of its porosity and effective
refractive index.

& 2014 Elsevier B.V. All rights reserved.

1. Theoretical background

1.1. The importance of ARCs

Anti-reflective coatings (ARCs) are a very common component
of a wide range of applications, including photolithography [1],
electronic screens [2], and solar cells [3]. A thorough review of the
topic can be found in Raut et al. [4]. These authors survey the
theoretical basis of ARCs, along with numerous applications and
preparation methods. Interestingly, they note that a large part of
current and future research in ARCs relates to solar applications.
This trend can be attributed to the endless quest for improving the
efficacy of solar receivers [4]. In this work, we will take the
perspective of the solar industry, but the conclusions are equally
valid for all other ARC applications.

1.2. The parameters controlling the transmittance of an ARC
containing system

As understanding the parameters controlling the transmittance
through a transparent glass slide coated on both sides with an ARC
is not trivial, we explain here some of the theoretical principles
behind the behavior of light in the system and its computation.

Whenever light is incident on a single interface between two
media, a fraction is reflected back. Fresnel's reflection coefficient
(FRC) may be used to calculate the fraction of reflected light, both
in terms of the magnitude of the electric field of the light and in
terms of the intensity or power. Assuming that the incident light is
monochromatic, unpolarized, and incident normal to the interface,
and assuming a smooth interface between two homogenous
media, the FRC for the electric field is,

r¼ n1�n2

n1þn2
ð1Þ

Eq. (1) – Fresnel's coefficient of reflection (FRC) for unpolarized
light incident normal to a smooth interface between two homo-
geneous media of refractive index n1 and n2, respectively.

The fraction of the intensity or power reflected (the reflectance)
is then given by R¼ rj j2.

Further assuming no losses, the fraction of the intensity or
power transmitted (the transmittance) is given by T ¼ 1�R [5].

A layer of material presents two or more interfaces, and light
that enters a layer will reflect back and forth internally inside of
the layer, undergoing constructive and destructive interference as
a function of the thickness of the layer. However, in the case of a
thick layer of glass (�1 mm thickness), small variations in the
thickness that result from the typical manufacturing process tend
to wash out the coherency of the constructive and destructive
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interference of the light, and the reflectance and transmittance for
a lossless thick glass layer surrounded on both sides by air or
vacuum may generally be written as [6],

R¼ 1�2nglass

1þn2
glass

T ¼ 1�R¼ 2nglass

1þn2
glass

; ð2Þ

Eq. (2) – The reflectance and transmittance for a thick glass
slide in an air or vacuum environment, where nglass is the
refractive index of glass, and the refractive index of air or vacuum
is set as 1.

In the case of an ARC, on the other hand, the constructive and
destructive interference generally must be considered as a func-
tion of the thickness of the ARC. A convenient method for
describing the reflectance and transmittance through an ARC,
and especially through a sequence of layers including ARCs, is
the transfer matrix method (TMM). A detailed discussion of the
TMM has been published by Katsidis and Siapkas [7]; we present
here only the details relevant to the current study. In the TMM, the
reflection at each interface (for normally incident light) is
described by an interface matrix,

Minterface ¼
1

1�r
1 r
r 1

� �
ð3Þ

Eq. (3) – The matrix representing the behavior of light at an
interface between two media when the light is incident normal to
the interface. r is Fresnel's coefficient of reflection as defined in Eq.
(1).and the propagation of the light through each layer in which
coherent constructive and destructive interference of light occurs
is described by a propagation matrix,

Mpropagation ¼
expð� jk0nlÞ 0

0 expðjk0nlÞ

 !
ð4Þ

Eq. (4) – The propagation matrix representing the behavior of
light when propagating in a medium. j is the square root of �1, k0
is the wavenumber of the light in vacuum, n is the refractive index
of the layer medium with respect to vacuum, and l is the thickness
of the layer.

These matrices are multiplied in sequence to create the total
matrix for a system of layers with interfaces, Mtotal, and the
reflectance and transmittance for the entire system are given by,

R¼ Mtotalð2;1Þ
Mtotalð1;1Þ

����
����
2

:

T ¼ 1
Mtotalð1;1Þ

����
����
2

ð5Þ

Eq. (5) – The reflectance and transmittance as calculated from
the TMM, where R is the reflectance, T is the transmittance, and
Mtotal(2,1) and Mtotal(2,1) are elements of the total matrix repre-
senting the system.

In the case of a system combining coherent and incoherent
layers, the calculation is more involved. Katsidis and Siapkas [7]
suggest a two-step calculation. In the first step, the conventional
TMM described above is used to calculate the reflectance and
transmittance of light through the sequence of coherent layers
that precede a given incoherent layer (in the direction of propaga-
tion of the incident light), and then again to calculate the
reflectance and transmittance of the sequence of coherent layers
that follow the incoherent layer. This creates two coherent blocks
surrounding each incoherent layer. In the second step, the coher-
ent blocks are combined with the incoherent layer assuming no
constructive or destructive interference in the incoherent layer,

and the total transmittance is given by,

T total ¼
T layers precedingT layers following

1�Rlayers precedingRlayers following
ð6Þ

Eq. (6) – The total transmittance through a combined system
containing coherent and incoherent layers, based on Katsidis and
Siapkas [7], where Tlayers preceding and Rlayers preceding are the
transmittance and reflectance, respectively, of the block of coher-
ent layers that precedes the incoherent layer, and Tlayers following

and Rlayers following are the transmittance and reflectance, respec-
tively, of the block of coherent layers that follows the
incoherent layer.

As can be seen from the equations above, the two character-
istics of an ARC that affect the reflectance of the system are its
refractive index (RI; n) and its thickness (l). Hence, controlling
these qualities is key for productive ARC preparation. In the
current work, we focus on the RI of the ARC.

1.3. Parameters controlling the RI

As is well known in the field of ARC design, the ideal ARC will
have an RI equal to the geometric average of the RIs of air and glass
(�1.23 [8]), which is lower than the RI of any typical material.
Therefore, the effective RI of ARCs is typically decreased from the
RI of the bulk ARC material by introducing porosity to the ARC
layer or by patterning the layer's surface [4]. In essence, these two
approaches are based on the same principle, namely exploiting the
low RI of air to reduce the effective RI of the layer. Thus, under-
standing the relationship between the RI and porosity is pivotal for
realizing a better ARC.

1.4. Mixing rules

1.4.1. Mixing rules – general
Many different formulas, called “mixing rules” or “effective

medium approximations” (EMAs), exist for predicting the effective
RI of a mixture of two materials, such as silica and air. An insightful
review of the topic can be found in Sahoo et al [9]. These authors
survey the interrelationship among the different mixing rules and
the conditions upon which each is valid, focusing on the applica-
tion of thin optical coatings. In general, mixing rules vary in their
assumptions, and it is not always obvious which mixing rule is
most appropriate for calculating the effective RI of an ARC. In
addition, the premise of mixing rules is that the mixture behaves
towards incident light as a homogeneous large mediumwould, i.e.,
that the light is reflected, refracted (in the case of non-normal
incidence), and transmitted, without net scattering in other direc-
tions caused by the “irregularities” (in the case of a porous
material, the pores or the material between the pores are the
irregularities). Such a premise should be valid only when the
irregularities are significantly smaller than the wavelength of the
light inside of the layer [9,10] and when they are randomly
dispersed throughout the layer. (Even when the irregularities are
significantly smaller than the wavelength of the light inside of the
layer, the irregularities scatter the light into all directions. How-
ever, such scattering may be considered dipole scattering, and in
the context of mixing rules, this dipole scattering becomes
incorporated into the average dipole moment of the material
and ultimately into its effective RI [11].)

For solar cell applications, the incident light is solar radiation
arriving at the surface of Earth. The specific intensity (intensity
per wavelength interval) of solar radiation at the Earth's surface
according to the dataset “Air Mass 1.5” [12] has a maximum at
�530-nm wavelength. Dividing 530 nm by the RI of the ARC
(�1.23), the wavelength of the light inside of the ARC layer
will be �430 nm. Therefore, the pores should have a diameter
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