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a b s t r a c t

Using a systematic approach, a collection of expressions for the series resistance of a solar cell are
derived from the diode model. Many published series resistance determination methods are among
them, or are slight variations on them. Some expressions have not yet been described in the literature.
Representation of the methods in a two-dimensional array allows for easy comparison and reveals that
many of the previously published methods are more alike than might appear at first sight. From a
discussion of the various methods, on the basis of the two-dimensional array arrangement, an overview
of the required approximations and assumptions for each method is assembled. Taking the effect of
these approximations and assumptions into account, it is expected that the method of Wolf &
Rauschenbach will provide the most accurate value for the series resistance of a solar cell.
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1. Introduction

The importance of ohmic losses in a solar cell was already
mentioned in the famous 1954 paper by Chapin, Fuller and Pearson
from Bell Labs which marked the start of the modern era of
photovoltaics [1]. Since the ohmic loss between the collector and the
point in the solar cell where an electron–hole pair is generated
depends on the location of that point [2–5], and electron–hole pairs
are generated throughout an illuminated solar cell, the concept of Rs as
a lumped effective series resistance of the solar cell is – by definition –

a simplification. Nevertheless, as long as current crowding phenomena
are small the series resistance of a solar cell can be well modeled by Rs
[6], making Rs a useful concept and an important parameter in the
analyses of a solar cell's performance. Unfortunately the value of Rs
cannot be measured directly and is, in fact, rather a challenge to
determine accurately. Studies concerning this started not long after the
start of the modern era of photovoltaics and because of the emergence
of new solar cell materials and designs the topic has been readdressed
ever since. Recent developments in high-efficiency concentrator cells
provide the latest challenge to determine Rs with an accuracy in the m
Ω range for cells with surface areas in the mm2 range. This is required
in order to determine the optimal configuration of the grid contact as
this has a major impact on the power output of a concentrator
photovoltaic (CPV) system.

Themanymethods to determine Rs that have been described in the
literature over the years have resulted in a large number of expressions
for Rs in parameters that can be directly determined from a solar cell's
IV-characteristic. The present study provides a systematic approach
towards the derivation of these expressions for Rs for a large collection
of methods [7–20], resulting in a framework in which these methods
are arranged and compared with each other. This reveals that they are
more alike than might appear at first sight. They all follow a derivation
involving either an equation based on the diode model of a solar cell
(labeled f here), its derivative (labeled f 0), its integral (labeled F) or a
combination of two of them. The systematic derivation of these
equations and their arrangement in a two-dimensional array provides
a convenient overview of all possible approaches to determine the
series resistance of a solar cell from one or two of the above-
mentioned equations. The two-dimensional array arrangement also
reveals that there are several approaches to determine Rs which have
not yet been described in the literature.

In a subsequent analysis of the methods we determine from a
theoretical perspective which method is expected to give the best
approximation for Rs. That is, which method uses the least
unfavorable approximations and assumptions in the derivation
towards its expression for Rs.

2. Theory

A general equivalent circuit of a single junction solar cell with a
lumped effective series resistance Rs is displayed in Fig. 1. The
associated expression for the current I generated by the cell as a
function of voltage V is [21]:

I¼ IL� ∑
α ¼ a;b;c;…

ðID;αÞ� Ish

¼ IL� ∑
α ¼ a;b;c;…

I0;α exp
Vþ IRs

nαVt

� �
�1

� �� �
�Vþ IRs

Rsh
; ð1Þ

with I, V being the light induced current IL (which is proportional
to the irradiance E), the current ID;α of diode α,1 the series

resistance Rs and the current Ish flowing through shunt resistance
Rsh all as defined in Fig. 1. I0;α and nα are the saturation current and
ideality factor of diode α. Lastly, there is the thermal voltage Vt,
defined as kT=q, with k being the Boltzmann constant, T being the
absolute temperature of the solar cell and q being the elemental
charge. A list of symbols is provided in Appendix A. With the sign
convention used in Eq. (1) the direction in which the light
generated current flows is defined as positive and the illuminated
IV-curve lies in the first quadrant.

Unfortunately Eq. (1) has no general analytic solution. For this
reason, the set of diodes is usually represented by a single diode
with an associated n and I0 value. This simplification causes these
values to be functions of I and E. The diode ideality factor increases
with I and decreases with E as illustrated in Fig. 2 and approaches
1 at high E and/or high V since recombination in the quasi-neutral
region dominates under these conditions [22,23]. However, n and
I0 are generally approximated as constants. Another generally used
approximation is that Rsh-1, which is valid for a high quality
solar cell. Using these simplifications Eq. (1) can be written as

I¼ IL� I0 exp
Vþ IRs

nVt

� �
�1

� �
; ð2Þ

the so-called single-diode equation. And although this equation
still has no general analytic solution, it can be rearranged into the
explicit function

V ¼ nVt ln
ILþ I0� I

I0

� �
� IRs: ð3Þ

This equation could also be rewritten into an expression for Rs.
However, the parameters IL, I0 and n are notoriously hard to
determine. Therefore, the idea is to find an expression for Rs in
terms of cell parameters which are easier to determine such as the
short circuit current Isc, the current and voltage at the maximum
power point Imp and Vmp, the open-circuit voltage Voc and the area
A under the IV-curve in the first quadrant. Since I0{IL in practice,
a frequently applied way to avoid having to determine I0 is to
make sure it only appears in a sum together with IL so that the
approximation

Ic � ILþ I0 � IL ð4Þ
can be applied. At short circuit conditions, Eq. (3) can be rewritten
as

Isc ¼ ILþ I0� I0 exp
IscRs

nVt

� �
; ð5Þ

from which it follows that the short circuit current Isc is a good
approximation for the photo current IL and/or Ic, as long as IscRs is

IL

I

ID,a ID,b ID,c Ish

VRsh

Rs

Fig. 1. General equivalent circuit of a solar cell with a lumped effective series
resistance.

1 Usually the number of constituent diodes is taken to be 2 or 3. Each diode
represents a section of the solar cell where a specific recombination mechanism
dominates. One diode represents the recombination in the quasi-neutral regions,
another the recombination in the depletion region and at the cell surface. A third

(footnote continued)
diode is sometimes included to represent Auger recombination in the solar cell,
which can be important for in particular silicon cells and III–V cells under very high
concentration ratios.
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