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We consider a saturated Darcy porous mediumwith an exothermic chemical reaction on the lower boundary.
The Dufour effect is neglected, however the influence of the Soret effect is studied. It is found that increasing
the Soret coefficient may be either linearly stabilising or destabilising, depending on the boundary parame-
ters and Lewis number. When stationary convection occurs increasing the Soret coefficient has a stabilising
effect. A switch from stationary to oscillatory convection occurs at a lower Lewis number for a greater
Soret coefficient. Linearised perturbation equations are given and numerical results for the critical Rayleigh
number are presented graphically and then discussed.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In the area of porous media there have been many comprehensive
books written including those by Ingham and Pop [4], Nield and Bejan
[8], Pop and Ingham [10], Straughan [15], Vadasz [18] and Vafai
[19,20]. It is well known in the literature regarding convection in fluids
and porous media that a thermal gradient may induce a small matter
flow called the Soret effect, this is discussed in, for example, Piazza
and Guarino [9] and Soret [14]. This cross-diffusion effect may cause
the denser component of a multi-component system to diffuse to a
cooler region, considered the positive direction, or to awarmer region,
which is the negative direction. When studying many natural pro-
cesses, such as chemical reactions in sediments, c.f. Domenico [2],
the Soret effect may be significant and cannot be neglected. The recip-
rocal effect in which a solutal gradient causes a thermal flux is called
the Dufour effect. In recent years a large number of articles on these
cross-diffusion effects have been published and references to these
may be found in Section 9.1.4 of Nield and Bejan [8].

Continuous dependence on the Soret coefficient has been
established for fixed boundary conditions using both the Brinkman
model (Straughan and Hutter [16]) and the Darcy model (Lin and
Payne [6]). The influence of both the Soret and Dufour effects has
been studied in many different models, vertical studies include
those of Tai and Char [17] who considered non-Newtonian fluids
and Postelnicu [11] who modelled a chemical reaction in a porous
medium, a visco elastic fluid flow over a stretching sheet is investigat-
ed by Salem [12]; Alam et al. [1] examine magneto-hydrodynamic

mixed convection on an inclined plate and include a chemical reac-
tion and heat generation; Malashetty and Biradar [7] study a Maxwell
fluid; and Lakshmi Narayana and Murthy [5] analyse free convection
in a horizontal plate of a Darcy porous medium.

In this work we revisit the problem of Scott and Straughan [13], in
which a horizontal layer of a Darcy porous medium of depth h bounded
on either side by solid walls and saturated by an incompressible fluid is
subject to an exothermic reaction on the lower wall, and discuss how
the results obtained change with the inclusion of the Soret effect.
Maintaining the assumption from Scott and Straughan [13] that the
density is independent of the reactant concentration the transport
equations for this problem are, c.f. Straughan [15],

p;i ¼
μ
K
vi−gρ0 1−α T−T0ð Þð Þki;

vi;i ¼ 0

1
M

T ;t þ viT ;i ¼ κΔT ;

ϕC;t þ viC;i ¼ ϕkcΔC þ ϕksΔT;

ð1Þ

where M=(ρ0cp)f/(ρ0c)m, with (ρ0c)m=ϕ(ρ0cp)f+(1−ϕ)(ρc)s, κ=
km/(ρ0cp)f, and km=κs(1−ϕ)+κfϕ, where κs and κf are the thermal
conductivities of the solid skeleton of the porous medium and the
saturating fluid, respectively. The final term on the right hand side
of Eq. (1)4 arises from the inclusion of the Soret effect.

On the upper boundary wall the temperature and concentration
are held constant and there is no mass flux across the boundary,

nivi ¼ w ¼ 0; T ¼ TU ; C ¼ CU on z ¼ h; ð2Þ

where n=(0,0,1) so that w≡v3.
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An exothermic surface reaction in which a reactant is converted
into an inert product at a rate r, where

r ¼ k0C exp
−E
R�T

� �
;

is present on the lower boundary. Here, k0 is a rate constant, R∗ is the
universal gas constant and E is the reaction's activation energy.

The heat flux q=−km∇T is the rate at which heat crosses the
boundary and is obtained from the right hand side of Eq. (1)3. On
the lower boundary q is proportional to the heat of the reaction, Q,
and the rate at which it occurs.

The right-hand side of Eq. (1)4 may be written as ϕ∇ J, where J=
kc∇C+ks∇T. The flux J is proportional to the rate at which the reac-
tion occurs and inversely proportional to the porosity.

Finally, we assume that there is no mass flux across the lower wall
and obtain the boundary conditions

w ¼ 0

km
dT
dz

¼ −Qk0C exp
−E
R�T

� �
;

ϕkc
dC
dz

þ ϕks
dT
dz

¼ k0C exp
−E
R�T

� �
on z ¼ 0:

ð3Þ

2. Non-dimensional linear perturbation equations

We follow the standard linear analysis used in Scott and Straughan
[13] by introducing small perturbations (u,θ,ϕ,π) to the steady state

�v; �T ; �C ; �p
� �

and after non-dimensionalising obtain the linear perturba-
tion equations

0 ¼ Δw−RΔ�θ;
θ;t ¼ −β1wþ Δθ;

Mϕγ;t ¼ −β3wþ 1
Le

Δγ þ SΔθ:
ð4Þ

The constants β1,β2,β3,β4 are determined by the boundary condi-
tions and calculated at the end of the current section after the pertur-
bations and non-dimensionalisations have been introduced to the
boundary conditions, w is now the third component of u, Δ∗=∂ 2/
∂x2+∂ 2/∂y2, Le=κ/(ϕkc) is the Lewis number, the Rayleigh number
is defined by

R ¼ ρ0gαhKTU

μκ

and the Soret coefficient is

S ¼ ϕks
κ

:

To find the Rayleigh number for which the system of Eq. (4) first
becomes unstable we consider a periodic cell and employ standard
Fourier mode analysis, where we let

γ ¼
X∞
j¼1

eσ j t f j x; yð ÞΦj zð Þ; ð5Þ

with similar forms to Eq. (5) for w and θ. The function f satisfies
Δ∗f=−k2f for a wave number, k, and σj is a general eigenvalue.

The real part of σj is the growth rate of a perturbation and there-
fore for the system to be linearly stable we require the real part of
all eigenvalues to be negative. We therefore consider a typical eigen-
value, σ, satisfying

0 ¼ D2−k2
� �

W þ Rk2Θ;

σΘ ¼ −β1W þ D2−k2
� �

Θ;

MϕσΦ ¼ −β3W þ 1
Le

D2−k2
� �

Φþ S D2−k2
� �

Θ;

ð6Þ

where D=d/dz.
As Φ only appears Eq. (6)3 it may initially seem possible to

de-couple this equation, however the reaction boundary conditions
mean that this is not possible.

We find the linearised non-dimensional boundary conditions to be

W ¼ 0; Θ ¼ 0; Φ ¼ 0; on z ¼ 1 ð7Þ

and

W ¼ 0;
DΘ ¼ −AΦ;
DΦþ HDΘ ¼ BΦ on z ¼ 0:

ð8Þ

where A,B,H,ξ are non-dimensional coefficients defined by

A ¼ Qk0CUh
TUkm

; B ¼ k0h
ϕkc

; H ¼ ksTU

kcCU
; ξ ¼ E

TUR
� :

It now remains for us to calculate the coefficients β1 and β3 by
evaluating the steady state on the boundary walls. It is found that

1 ¼ β1 þ β2;
1 ¼ β3 þ β4;
β1 ¼ −Aβ4 exp −ξ=β2ð Þ;
β3 þ Hβ1 ¼ Bβ4 exp −ξ=β2ð Þ;

ð9Þ

Nomenclature

A,B,H dimensionless boundary condition parameters
C reactant concentration
c specific heat
cp specific heat at constant pressure
E reaction activation energy
h depth of porous layer
K permeability of the porous medium
k wave number
k0 reaction rate constant
kc diffusivity of the reactant
km thermal conductivity of the porous medium
Le Lewis number
Q heat of reaction
R Rayleigh number
R∗ universal gas constant
S Soret coefficient
T temperature
T0 reference temperature
t time
v velocity
α coefficient of thermal expansion
β1,β2,β3,β4 constants determined in system of Eq. (9)
κ thermal diffusivity of the porous medium
μ dynamic viscosity
ξ dimensionless activation energy parameter
ρ density
ρ0 reference density
ϕ porosity
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